Concept explainers
Interpretation:
The complete MO picture and energy diagram for the allyl anion
Concept introduction:
The overlap of the two atomic orbitals (AOs) results in the formation of two molecular orbitals (MOs). One of these, called the bonding MO, is formed as a result of constructive interaction. It is lower in energy than the original AOs. The other, called the antibonding MO, is formed as a result of destructive interaction. It is higher in energy than the original AOs. Antibonding MOs have a node (a nodal plane) situated between the two atoms. The overall character of the MO is determined by the number of bonding and antibonding interactions between the AOs. If the bonding interactions are more, the overall character is bonding. If the antibonding interactions are more, the overall character is antibonding. If they are equal or there are none, the MO is nonbonding.
Depending on whether the AOs overlap along the bond axis or away from the bond axis (sideways), the MOs are designated as
In a molecule with double bonds, all bonding
For a linear system of conjugated p orbitals, all nodal planes in a resulting

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
Organic Chemistry: Principles And Mechanisms
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
