Concept explainers
a.
To obtain: The
a.
Answer to Problem 14.26E
The probability of winning a bet on red colored is 0.47.
Explanation of Solution
Given info:
The roulette wheel consists of 38 slots numbered as 0, 00 and 1 to 36 in which 0,00 are green colored, 18 are red colored and 18 are black.
Calculation:
Here, the
The probability of winning a bet on red in a single play of roulette is,
Thus, the probability of winning a bet on red colored is 0.47.
b.
To obtain: The distribution of random variable X.
b.
Answer to Problem 14.26E
The distribution of X is binomial.
X | 0 | 1 | 2 | 3 | 4 |
0.0789 | 0.2799 | 0.3723 | 0.2201 | 0.0488 |
Explanation of Solution
Given info:
A bet is placed on red, every time when the roulette is played for four times.
Calculation:
Define the random variable X as the number of win, when bet is placed on red every time.
Also, there are two possible outcomes (winning the bet on red or losing the bet on red) and the probability of success is the probability that winning when placing bet on red each time (p) is 0.47 and not winning, when placing bet on red each time is 0.53
Therefore, winning when placing bet on red every time follows the binomial distribution with sample size
Thus, the value of n and p, if X has a binomial distribution is 4 and 0.47 respectively.
The probability value when
The binomial distribution formula is,
Substitute
Thus, the probability value with
The probability value when
Substitute
Thus, the probability value with
The probability value when
Substitute
Thus, the probability value with
The probability value with
Substitute
Thus, the probability value with
The probability value with
Substitute
Thus, the probability value with
Thus, the probability distribution of X is given below:
X | 0 | 1 | 2 | 3 | 4 |
0.0789 | 0.2799 | 0.3723 | 0.2201 | 0.0488 |
c.
To find: The probability of break even.
c.
Answer to Problem 14.26E
The probability of break even is 0.5.
Explanation of Solution
Given info:
Break even means when same amount of bet is placed on every play and win exactly two plays out of four plays.
Calculation:
Thus, the probability of break even is 0.5.
d.
To find: The probability of losing money.
d.
Answer to Problem 14.26E
The probability of losing money is 0.3125.
Explanation of Solution
Given info:
In four plays, fewer than two are won then money will be lost.
Calculation:
Define the random variable Y “number of times the game is lost”
From part (c) the probability of losing, p is 0.5 thus, q is
The probability value for
The binomial distribution formula is,
Substitute
Thus, the probability of losing money is 0.3125.
Want to see more full solutions like this?
Chapter 14 Solutions
The Basic Practice of Statistics
- For context, the images attached below are a question from a June, 2024 past paper in statistical modelingarrow_forwardFor context, the images attached below (question and related graph) are from a February 2024 past paper in statistical modelingarrow_forwardFor context, the images attached below are from a February 2024 past paper in statistical modelingarrow_forward
- For context, the image provided below is a question from a September, 2024 past paper in statistical modelingarrow_forwardFor context, the image below is from a January 2024 past paper in statistical modelingarrow_forwardFor context, the image provided below is a question from a September, 2024 past paper in statistical modelingarrow_forward
- Section 2.2 Subsets 71 Exercise Set 2.2 Practice Exercises In Exercises 1-18, write or in each blank so that the resulting statement is true. 1. {1, 2, 5} {1, 2, 3, 4, 5, 6, 7} 2. {2, 3, 7} {1, 2, 3, 4, 5, 6, 7} 3. {-3, 0, 3} {-4,-3,-1, 1, 3, 4} 4. {-4, 0, 4} 5. {Monday, Friday} {-3, -1, 1, 3} {Saturday, Sunday, Monday, Tuesday, Wednesday} 6. {Mercury, Venus, Earth} {Venus, Earth, Mars, Jupiter} 7. {x/x is a cat} {xx is a black cat} {x|x is a pure-bred dog} ibrary mbers, ause the entire sual 8. {xx is a dog} 9. (c, o, n, v, e, r, s, a, t, i, o, n} {v, o, i, c, e, s, r, a, n, t, o, n} 10. [r, e, v, o, l, u, t, i, o, n} {t, o, l, o, v, e, r, u, i, n} 33. A = {x|x E N and 5 < x < 12} B = {x|x E N and 2 ≤ x ≤ 11} A_ B 34. A = {x|x = N and 3 < x < 10} B = A. {x|x = N and 2 ≤ x ≤ 8} B 35. Ø {7, 8, 9,..., 100} 36. Ø _{101, 102, 103, . . ., 200} 37. [7, 8, 9,...} 38. [101, 102, 103, ...} 39. Ø 40. { } { } e In Exercises 41-54, determine whether each statement is true or false. If…arrow_forwardA = 5.8271 ± 0.1497 = B 1.77872 ± 0.01133 C=0.57729 ± 0.00908 1. Find the relative uncertainty of A, B, and C 2. Find A-3 3. Find 7B 4. Find A + B 5. Find A B-B - 6. Find A * B 7. Find C/B 8. Find 3/A 9. Find A 0.3B - 10. Find C/T 11. Find 1/√A 12. Find AB²arrow_forwardWhy charts,graphs,table??? difference between regression and correlation analysis.arrow_forward
- You’re scrolling through Instagram and you notice that a lot of people are posting selfies. This piques yourcuriosity and you want to estimate the percentage of photos on Instagram that are selfies.(a) (5 points) Is there a “ground truth” for the percentage of selfies on Instagram? Why or why not?(b) (5 points) Is it possible to estimate the ground truth percentage of selfies on Instagram?Irrespective of your answer to the previous question, you decide to pull up n = 250 randomly chosenphotos from your friends’ Instagram accounts and find that 32% of these photos are selfies.(c) (15 points) Determine which of the following is an observation, a variable, a sample statistic (valuecalculated based on the observed sample), or a population parameter.• A photo on Instagram.• Whether or not a photo is a selfie.• Percentage of all photos on Instagram that are selfies.• 32%.(d) (5 points) Based on the sample you collected, do you think 32% is a reliable ballpark estimate for theground truth…arrow_forwardCan you explain this statement below in layman's terms? Secondary Analysis with Generalized Linear Mixed Model with clustering for Hospital Center and ICUvs Ward EnrolmentIn a secondary adjusted analysis we used generalized linear mixed models with random effects forcenter (a stratification variable in the primary analyses). In this analysis, the relative risk for the primaryoutcome of 90-day mortality for 7 versus 14 days of antibiotics was 0.90 (95% Confidence Interval [CI]0.78, 1.05).arrow_forwardIn a crossover trial comparing a new drug to a standard, π denotes the probabilitythat the new one is judged better. It is desired to estimate π and test H0 : π = 0.5against H1 : π = 0.5. In 20 independent observations, the new drug is better eachtime.(a) Find and plot the likelihood function. Give the ML estimate of π (Hint: youmay use the plot function in R)arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman