EBK THE BASIC PRACTICE OF STATISTICS
EBK THE BASIC PRACTICE OF STATISTICS
7th Edition
ISBN: 8220103935319
Author: Moore
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 14.26E

a.

To determine

To obtain: The probability of winning with a bet on red in a single play of roulette.

a.

Expert Solution
Check Mark

Answer to Problem 14.26E

The probability of winning a bet on red colored is 0.47.

Explanation of Solution

Given info:

The roulette wheel consists of 38 slots numbered as 0, 00 and 1 to 36 in which 0,00 are green colored, 18 are red colored and 18 are black.

Calculation:

Here, the sample size is n=38 , number of red colored is 18

The probability of winning a bet on red in a single play of roulette is,

P(Winningabetonredcolored)=NumberofredcoloredSamplesize=1838=0.4737

Thus, the probability of winning a bet on red colored is 0.47.

b.

To determine

To obtain: The distribution of random variable X.

b.

Expert Solution
Check Mark

Answer to Problem 14.26E

The distribution of X is binomial.

X 0 1 2 3 4
P(X=x) 0.0789 0.2799 0.3723 0.2201 0.0488

Explanation of Solution

Given info:

A bet is placed on red, every time when the roulette is played for four times.

Calculation:

Define the random variable X as the number of win, when bet is placed on red every time.

Also, there are two possible outcomes (winning the bet on red or losing the bet on red) and the probability of success is the probability that winning when placing bet on red each time (p) is 0.47 and not winning, when placing bet on red each time is 0.53 (=10.47) . Thus, X follows the binomial distribution.

Therefore, winning when placing bet on red every time follows the binomial distribution with sample size (n) of 4 and the probability (p) with 0.47.

Thus, the value of n and p, if X has a binomial distribution is 4 and 0.47 respectively.

The probability value when X=0 :

The binomial distribution formula is,

P(X=x)=n!(nx)!x!pxqnx

Substitute n=4 , p as 0.47 and q as 0.53(=10.47) .

P(X=0)=4!0!(40)!(0.47)0(0.53)40=1×1×0.0789=0.0789

Thus, the probability value with X=0 is 0.0789.

The probability value when X=1 :

Substitute n=4 , p as 0.47 and q as 0.53(=10.47) .

P(X=1)=4!1!(41)!(0.47)1(0.53)41=4×0.47×0.1489=0.2799

Thus, the probability value with X=1 is 0.2799.

The probability value when X=2 :

Substitute n=4 , p as 0.47 and q as 0.53(=10.47) .

P(X=2)=4!2!(42)!(0.47)2(0.53)42=6×0.2209×0.2809=0.3723

Thus, the probability value with X=2 is 0.3723.

The probability value with X=3 :

Substitute n=4 , p as 0.47 and q as 0.53(=10.47) .

P(X=3)=4!3!(43)!(0.47)3(0.53)43=4×0.1038×0.53=0.2201

Thus, the probability value with X=3 is 0.2201.

The probability value with X=4 :

Substitute n=4 , p as 0.47 and q as 0.53(=10.47) .

P(X=4)=4!4!(44)!(0.47)4(0.53)44=1×0.0488×1=0.0488

Thus, the probability value with X=4 is 0.0488.

Thus, the probability distribution of X is given below:

X 0 1 2 3 4
P(X=x) 0.0789 0.2799 0.3723 0.2201 0.0488

c.

To determine

To find: The probability of break even.

c.

Expert Solution
Check Mark

Answer to Problem 14.26E

The probability of break even is 0.5.

Explanation of Solution

Given info:

Break even means when same amount of bet is placed on every play and win exactly two plays out of four plays.

Calculation:

P(Breakeven)=P(Winningexactlytwoplayoutoffourplays)=24=0.5

Thus, the probability of break even is 0.5.

d.

To determine

To find: The probability of losing money.

d.

Expert Solution
Check Mark

Answer to Problem 14.26E

The probability of losing money is 0.3125.

Explanation of Solution

Given info:

In four plays, fewer than two are won then money will be lost.

Calculation:

Define the random variable Y “number of times the game is lost”

From part (c) the probability of losing, p is 0.5 thus, q is 0.5(=10.5)

The probability value for Y<2 :

The binomial distribution formula is,

P(Y=y)=n!(ny)!y!pyqny

Substitute n=4 , and q as 0.5(=10.5)

P(Y<2)=P(Y=0)+P(Y=1)=(4!0!(40)!(0.5)0(0.5)40)+(4!1!(41)!(0.5)1(0.5)41)=(1×1×0.0625)+(4×0.5×0.125)=0.0625+0.25

                 =0.3125

Thus, the probability of losing money is 0.3125.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Hint for the first part of question 2: To assist you with filling out the table in the first part of the question,…
Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28, and 25. Compute the range, interquartile range, variance, and standard deviation (to a maximum of 2 decimals, if decimals are necessary). Range   Interquartile range   Variance   Standard deviation
Perform a Step by step  following tests in Microsoft Excel. Each of the following is 0.5 points, with a total of 6 points. Provide your answers in the following table. Median Standard Deviation Minimum Maximum Range 1st Quartile 2nd Quartile 3rd Quartile Skewness; provide a one sentence explanation of what does the skewness value indicates Kurtosis; provide a one sentence explanation of what does the kurtosis value indicates Make a labelled histogram; no point awarded if it is not labelled Make a labelled boxplot; no point awarded if it is not labelled   Data 27 30 22 25 24 22 20 28 20 26 21 23 24 20 28 30 20 28 29 30 21 26 29 25 26 25 20 30 26 28 25 21 22 27 27 24 26 22 29 28 30 22 22 22 30 21 21 30 26 20
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License