Concept explainers
Check Your Understanding. A current
The maximum emf induced in the surrounding coil.
Answer to Problem 14.1CYU
The maximum emf induced in the surrounding coil is
Explanation of Solution
Given info:
Formula used:
The formula for calculating induced emf in a surrounding coil is:
Here,
Calculation:
From equation (2) we get,
Now, the emf induced in the surrounding coil is,
Conclusion:
The maximum emf induced in the surrounding coil is
Want to see more full solutions like this?
Chapter 14 Solutions
University Physics Volume 2
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Microbiology with Diseases by Body System (5th Edition)
Chemistry: A Molecular Approach (4th Edition)
Cosmic Perspective Fundamentals
Human Biology: Concepts and Current Issues (8th Edition)
- A long, cylindrical solenoid with 100 turns per centimeter has a radius of 1.5 cm. (a) Neglecting end effects, that is the self-inductance per unit length of the solenoid? (b) If the current through the solenoid changes at the rate 5.0 AJs, what is the emf induced per unit length?arrow_forwardThe square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forwardA solenoid with 4 x 107turns/m has an iron core placed in it whose magnetic susceptibility is 4.0 x 103. (a) If a cent of 2.0 A flows through the solenoid, what is the magnetic field in the iron core? (b) What is the effective surface current formed by the aligned atomic current loops in the iron core? (c) What is the self-inductance of the filled solenoid?arrow_forward
- A long solenoid with n= 10 turns per centimeter has a cross-sectional area of 5.0 cm2and carries a current of 0.25 A. A coil with five turns encircles the solenoid. When the current through the solenoid is turned off, it decreases to zero in 0.050 s. What is the average emf induced in the coil?arrow_forwardCheck Your Understanding (a) What is the magnetic flux through one turn of a solenoid of self- inductance 8.0 × 10-5 H when a current of 3.0 A flows through it? Assume that the solenoid has 1000 turns and is wound from wire of diameter 1.0 mm. (b) What is the cross-sectional area of the solenoid?arrow_forwardDesign a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forward
- A 500-turn coil with a 0.250m2 area is spun in Earth’s 5.00105T magnetic field, producing a 12.0-kV maximum emf. (a) As what angular velocity must the coil be spun? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?arrow_forwardA coil with a self-inductance of 3.0 H and a resistance of 100 2 carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?arrow_forwardIn an oscillating LC circuit the maximum charge on the capacitor is 2.0 × 10-6 C and the maximum current through the inductor is 8.0 mA. (a) What is the period of the oscillations? (b) How much time elapses between an instant when the capacitor is uncharged and the next instant when it is fully charged?arrow_forward
- (a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forwardA solenoid has a ferromagnetic core, n = 1000 turns per meter, and I = 5.0 A. If B inside the solenoid is 2.0 T, what is for the core material?arrow_forwardA long solenoid with 10 turns per centimeter is placed inside a copper ring such that both objects hove the same central axis. The radius of the ring is 10.0 cm. and the radius of the solenoid is 5.0 cm. (a) What is the emf induced in the ring when the current 2 through the solenoid is 5.0 A and changing at a rate of 100 A/s? (b) What is the emf induced in the ring when 1=2.0A and. dI/dt=100A/s ? (c) What is the electric field inside the ring for these two cases? id: Suppose the ring is moved so that its central axis and the central axis of the solenoid are still parallel but no longer coincide. (You should assume that the solenoid is still inside die ring.) New what is the emf induced in the ring? (el Can you calculate the electric field in die ring as you did in part (c)?arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning