Applied Fluid Mechanics (7th Edition)
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 14.17PP

Calculate the depth of flow in a trapezoidal channel with a bottom width of 3 m and whose walls slope 40 ° with the horizontal. The channel is made of unfinished concrete and is laid on a 0.1-percent slope. The discharge is 15   m 3 / s .

Blurred answer
Students have asked these similar questions
For the walking-beam mechanism shown in Figure 3, find and plot the x and y coordinates of the position of the coupler point P for one complete revolution of the crank O2A. Use the coordinate system shown in Figure 3. Hint: Calculate them first with respect to the ground link 0204 and then transform them into the global XY coordinate system. y -1.75 Ꮎ Ꮎ 4 = 2.33 0242.22 L4 x AP = 3.06 L2 = 1.0 W2 31° B 03 L3 = 2.06 P 1 8 5 .06 6 7 P'
The link lengths, gear ratio (2), phase angle (Ø), and the value of 02 for some geared five bar linkages are defined in Table 2. The linkage configuration and terminology are shown in Figure 2. For the rows assigned, find all possible solutions for angles 03 and 04 by the vector loop method. Show your work in details: vector loop, vector equations, solution procedure. Table 2 Row Link 1 Link 2 Link 3 Link 4 Link 5 λ Φ Ө a 6 1 7 9 4 2 30° 60° P y 4 YA B b R4 R3 YA A Gear ratio: a 02 d 05 r5 R5 R2 Phase angle: = 0₂-202 R1 05 02 r2 Figure 2. 04 X
Problem 4 A .025 lb bullet C is fired at end B of the 15-lb slender bar AB. The bar is initially at rest, and the initial velocity of the bullet is 1500 ft/s as shown. Assuming that the bullet becomes embedded in the bar, find (a) the angular velocity @2 of the bar immediately after impact, and (b) the percentage loss of kinetic energy as a result of the impact. (c) After the impact, does the bar swing up 90° and reach the horizontal? If it does, what is its angular velocity at this point? Answers: (a). @2=1.6 rad/s; (b). 99.6% loss = (c). Ah2 0.212 ft. The bar does not reach horizontal. y X 4 ft 15 lb V₁ 1500 ft/s 0.025 lb C 30°7 B A

Chapter 14 Solutions

Applied Fluid Mechanics (7th Edition)

Ch. 14 - Determine the normal discharge for an aluminum...Ch. 14 - A circular culvert under a highway is 6 ft in...Ch. 14 - A wooden flume is being built to temporarily carry...Ch. 14 - A storm drainage channel in a city where heavy...Ch. 14 - Figure 14.21 represents the approximate shape of a...Ch. 14 - Calculate the depth of flow of water in a...Ch. 14 - Calculate the depth of flow in a trapezoidal...Ch. 14 - A rectangular channel must carry 2.0m3/s of water...Ch. 14 - The channel shown in Fig. 14.22 has a surface of...Ch. 14 - A square storage room is equipped with automatic...Ch. 14 - The flow from two of the troughs described in...Ch. 14 - For a rectangular channel with a bottom width of...Ch. 14 - It is desired to carry 2.00m3/s of water at a...Ch. 14 - For the channel designed in Problem 14.23, compute...Ch. 14 - Prob. 14.25PPCh. 14 - Prob. 14.26PPCh. 14 - A trapezoidal channel has a bottom width of 2.00...Ch. 14 - For the channel described in Problem 14.27,...Ch. 14 - Repeat Problem 14.28, except that the channel is...Ch. 14 - A trapezoidal channel has a bottom width of 2.00...Ch. 14 - Prob. 14.31PPCh. 14 - Compute the flow area and hydraulic radius for a...Ch. 14 - Prob. 14.33PPCh. 14 - Prob. 14.34PPCh. 14 - Prob. 14.35PPCh. 14 - Prob. 14.36PPCh. 14 - Prob. 14.37PPCh. 14 - Prob. 14.38PPCh. 14 - A rectangular channel 2.00 m wide carries 5.5m3/s...Ch. 14 - Prob. 14.40PPCh. 14 - A triangular channel with side slopes having a...Ch. 14 - A trapezoidal channel with a bottom width of 3.0...Ch. 14 - Prob. 14.43PPCh. 14 - Determine the required length of a contracted weir...Ch. 14 - Prob. 14.45PPCh. 14 - Prob. 14.46PPCh. 14 - Compare the discharges over the following weirs...Ch. 14 - Prob. 14.48PPCh. 14 - For a Parshall flume with a throat width of 9 in,...Ch. 14 - Prob. 14.50PPCh. 14 - A flow rate of 50ft3/s falls within the range of...Ch. 14 - Prob. 14.52PPCh. 14 - A long-throated flume is installed in a...Ch. 14 - Prob. 14.54PPCh. 14 - Prob. 14.55PPCh. 14 - Prob. 14.56PPCh. 14 - Prob. 14.57PPCh. 14 - For a long-throated flume of design B in a...Ch. 14 - For a long-throated flume of design C in a...Ch. 14 - Prob. 14.60PPCh. 14 - Prob. 14.61PP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License