CHEM FOR ENGNRNG SDNTS (EBOOK) W/ACCES
CHEM FOR ENGNRNG SDNTS (EBOOK) W/ACCES
3rd Edition
ISBN: 9781337739382
Author: Brown
Publisher: CENGAGE L
Question
Book Icon
Chapter 14, Problem 14.16PAE

(a)

Interpretation Introduction

To determine:

The process of transformation of T230h to R226a

(a)

Expert Solution
Check Mark

Explanation of Solution

Atomic numbers of thorium and radium are 90 and 88, respectively.

Consider the transformation:

T90230hR88226a

Thus, balancing the atomic number on both sides, we get that unknown particle ejected has atomic number of 9088=2 and the atomic mass as 230226=4. The nucleus with atomic number 2 and mass number 4 is aHelium nucleus. Hence, the process leading to the transformation of T230h to R226a is an alpha emission process.

T90230hR88226a+H24e

(b)

Interpretation Introduction

To determine:

The process of transformation of C137s to B137a

(b)

Expert Solution
Check Mark

Explanation of Solution

Atomic numbers of Cs and Ba are 55 and 56, respectively.

Consider the transformation:

C55137sB56137a

Thus, balancing the atomic number on both sides, we get that unknown particle ejected has atomic number of 5556=1 and the atomic mass as 137137=0. The particle with atomic number -1 and mass number 0 is an electron. Hence, the process leading to the transformation of C137s to B137a is a beta emission process.

C55137sB56137a+β10+ν¯

(c)

Interpretation Introduction

To determine:

The process of transformation of K38 to A38r

(c)

Expert Solution
Check Mark

Explanation of Solution

Atomic numbers of K and Ar are 19 and 18, respectively.

Consider the transformation:

K1938A1838r

Thus, balancing the atomic number on both sides, we get that unknown particle ejected has atomic number of 1918=1 and the atomic mass as 3838=0. The particle with atomic number 1 and mass number 0 is a positron. Hence, the process leading to the transformation of K38 to A38r is a positron emission process.

K1938A1838r+β10+ν

(d)

Interpretation Introduction

To determine:

The process of transformation of Z97r to N97b

(d)

Expert Solution
Check Mark

Explanation of Solution

Atomic numbers of Zr and Nb are 40 and 41, respectively.

Consider the transformation:

Z4097rN4197b

Thus, balancing the atomic number on both sides, we get that the unknown particle ejected has atomic number of 4041=1 and the atomic mass as 9797=0. The particle with atomic number -1 and mass number 0 is an electron. Hence, the process leading to the transformation of Z97r to N97b is a beta emission process.

K1938A1838r+β10+ν

Conclusion

Therefore, if one of the species from the radioactive decay equation is missing, it can be determined by balancing atomic numbers and atomic mass numbers. Thus, the type of radioactive decay process can be determined if the atomic mass and atomic number of transforming nuclei is given.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
please solve. If the answer is "no error" and it asks me to type something, and i typed a-helix, its always wrong.
Can you please solve and explain this for me in a simple way? I cant seem to comprehend this problem.
Part I. Problem solving. Include all necessary calculations 13 provide plots and graphs. Complexation wl diphenyl carbazide (OPC) in acidic media is another type of sensitive photometric method used for the analysis of aqueous. hexavalent chromium. At 540nm the cherry-red complex as a result of DPC reaction w/ chromium can be photometrically measured. at this wavelength. - a 25mL The UV-vis analysis for the determination of nexavalent chromium in ground water sample is given below. The experiment was based on external calibration method w/ each measurement sample prepared are as follows lab sample analysis contained the standard 100 ppb croy cor groundwater sample, volumes used as indicated below), 12.50 mL of 0.02 M H2Soy and 5.50 ml of 100 ppm DPC (wi water to adjust final volume to 25-ml). The main stripping method was square wave voltammetry, following the conditions set in the main ASV experiment. Standard 100 Volumetric Groundwater H2SO4 0.20 M, flask Sample, mL ppb CrO4*, 100…

Chapter 14 Solutions

CHEM FOR ENGNRNG SDNTS (EBOOK) W/ACCES

Ch. 14 - Prob. 14.1PAECh. 14 - Prob. 14.2PAECh. 14 - Prob. 14.3PAECh. 14 - Prob. 14.4PAECh. 14 - (a) How does 14C enter a living plant? (b) Write...Ch. 14 - Prob. 14.6PAECh. 14 - Prob. 14.7PAECh. 14 - Prob. 14.8PAECh. 14 - Prob. 14.9PAECh. 14 - Prob. 14.10PAECh. 14 - Prob. 14.11PAECh. 14 - Prob. 14.12PAECh. 14 - Prob. 14.13PAECh. 14 - Prob. 14.14PAECh. 14 - Prob. 14.15PAECh. 14 - Prob. 14.16PAECh. 14 - Prob. 14.17PAECh. 14 - Prob. 14.18PAECh. 14 - Prob. 14.19PAECh. 14 - Prob. 14.20PAECh. 14 - Prob. 14.21PAECh. 14 - Prob. 14.22PAECh. 14 - Prob. 14.23PAECh. 14 - Prob. 14.24PAECh. 14 - Prob. 14.25PAECh. 14 - Prob. 14.26PAECh. 14 - Prob. 14.27PAECh. 14 - Prob. 14.28PAECh. 14 - Prob. 14.29PAECh. 14 - Prob. 14.30PAECh. 14 - Prob. 14.31PAECh. 14 - Prob. 14.32PAECh. 14 - Prob. 14.33PAECh. 14 - Prob. 14.34PAECh. 14 - Prob. 14.35PAECh. 14 - Prob. 14.36PAECh. 14 - Prob. 14.37PAECh. 14 - Prob. 14.38PAECh. 14 - Prob. 14.39PAECh. 14 - Prob. 14.40PAECh. 14 - Prob. 14.41PAECh. 14 - Prob. 14.42PAECh. 14 - Prob. 14.43PAECh. 14 - Prob. 14.44PAECh. 14 - Prob. 14.45PAECh. 14 - Prob. 14.46PAECh. 14 - Prob. 14.47PAECh. 14 - Prob. 14.48PAECh. 14 - Prob. 14.49PAECh. 14 - Prob. 14.50PAECh. 14 - Prob. 14.51PAECh. 14 - Prob. 14.52PAECh. 14 - Prob. 14.53PAECh. 14 - Prob. 14.54PAECh. 14 - Prob. 14.55PAECh. 14 - Prob. 14.56PAECh. 14 - Prob. 14.57PAECh. 14 - Prob. 14.58PAECh. 14 - Prob. 14.59PAECh. 14 - Prob. 14.60PAECh. 14 - Prob. 14.61PAECh. 14 - Prob. 14.62PAECh. 14 - Prob. 14.63PAECh. 14 - Prob. 14.64PAECh. 14 - Prob. 14.65PAECh. 14 - Prob. 14.66PAECh. 14 - Prob. 14.67PAECh. 14 - Prob. 14.68PAECh. 14 - Prob. 14.69PAECh. 14 - Prob. 14.70PAECh. 14 - Prob. 14.71PAECh. 14 - Prob. 14.72PAECh. 14 - Prob. 14.73PAECh. 14 - Prob. 14.74PAECh. 14 - Prob. 14.75PAECh. 14 - Prob. 14.76PAECh. 14 - Prob. 14.77PAECh. 14 - Prob. 14.78PAECh. 14 - Prob. 14.79PAECh. 14 - Prob. 14.80PAECh. 14 - Prob. 14.81PAECh. 14 - Prob. 14.82PAECh. 14 - Prob. 14.83PAECh. 14 - Prob. 14.84PAECh. 14 - Prob. 14.85PAECh. 14 - Prob. 14.86PAECh. 14 - Prob. 14.87PAECh. 14 - Prob. 14.88PAECh. 14 - Prob. 14.89PAECh. 14 - Prob. 14.90PAECh. 14 - Prob. 14.91PAECh. 14 - Prob. 14.92PAECh. 14 - Prob. 14.93PAECh. 14 - Prob. 14.94PAECh. 14 - Prob. 14.95PAECh. 14 - Prob. 14.96PAECh. 14 - Prob. 14.97PAECh. 14 - Prob. 14.98PAECh. 14 - Prob. 14.99PAECh. 14 - Prob. 14.100PAECh. 14 - Prob. 14.101PAECh. 14 - Prob. 14.102PAECh. 14 - Prob. 14.103PAE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning