Using the ideal gas equation, equations has to be derived for the mass, density and partial pressures of the gases in a gaseous mixture. And the value of equilibrium constant K p also has to be found. Concept introduction: Equilibrium constant ( K p ) : For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant K p . Ideal gas equation is an equation that is describing the state of a imaginary ideal gas. PV =n RT Where, P is the pressure of the gas V is the volume n is the number of moles of gas R is the universal gas constant (R=0 .0821LatmK -1 mol -1 ) T is the temperature
Using the ideal gas equation, equations has to be derived for the mass, density and partial pressures of the gases in a gaseous mixture. And the value of equilibrium constant K p also has to be found. Concept introduction: Equilibrium constant ( K p ) : For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant K p . Ideal gas equation is an equation that is describing the state of a imaginary ideal gas. PV =n RT Where, P is the pressure of the gas V is the volume n is the number of moles of gas R is the universal gas constant (R=0 .0821LatmK -1 mol -1 ) T is the temperature
Solution Summary: The author explains the value of equilibrium constant for gaseous reactions, and the ideal gas equation.
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Using the ideal gas equation, equations has to be derived for the mass, density and partial pressures of the gases in a gaseous mixture. And the value of equilibrium constant Kp also has to be found.
Concept introduction:
Equilibrium constant(Kp): For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant Kp.
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
PV=n RT
Where,
P is the pressure of the gas
V is the volume
n is the number of moles of gas
R is the universal gas constant (R=0.0821LatmK-1mol-1)
T is the temperature
(b)
Interpretation Introduction
Interpretation:
Using the ideal gas equation, equations has to be derived for the mass, density and partial pressures of the gases in a gaseous mixture. And the value of equilibrium constant Kp also has to be found.
Concept introduction:
Equilibrium constant(Kp): For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant Kp.
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
PV=n RT
Where,
P is the pressure of the gas
V is the volume
n is the number of moles of gas
R is the universal gas constant (R=0.0821LatmK-1mol-1)
T is the temperature
(c)
Interpretation Introduction
Interpretation:
Using the ideal gas equation, equations has to be derived for the mass, density and partial pressures of the gases in a gaseous mixture. And the value of equilibrium constant Kp also has to be found.
Concept introduction:
Equilibrium constant(Kp): For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant Kp.
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
PV=n RT
Where,
P is the pressure of the gas
V is the volume
n is the number of moles of gas
R is the universal gas constant (R=0.0821LatmK-1mol-1)
T is the temperature
(d)
Interpretation Introduction
Interpretation:
Using the ideal gas equation, equations has to be derived for the mass, density and partial pressures of the gases in a gaseous mixture. And the value of equilibrium constant Kp also has to be found.
Concept introduction:
Equilibrium constant(Kp): For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant Kp.
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
PV=n RT
Where,
P is the pressure of the gas
V is the volume
n is the number of moles of gas
R is the universal gas constant (R=0.0821LatmK-1mol-1)
2H2S(g)+3O2(g)→2SO2(g)+2H2O(g)
A 1.2mol sample of H2S(g) is combined with excess O2(g), and the reaction goes to completion.
Question
Which of the following predicts the theoretical yield of SO2(g) from the reaction?
Responses
1.2 g
Answer A: 1.2 grams
A
41 g
Answer B: 41 grams
B
77 g
Answer C: 77 grams
C
154 g
Answer D: 154 grams
D
Part VII. Below are the 'HNMR, 13 C-NMR, COSY 2D- NMR, and HSQC 2D-NMR (similar with HETCOR but axes are reversed) spectra of an
organic compound with molecular formula C6H1003 - Assign chemical shift values to the H and c atoms of the
compound. Find the structure. Show complete solutions.
Predicted 1H NMR Spectrum
4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
f1 (ppm)
Predicted 13C NMR Spectrum
100
f1 (ppm)
30
220 210 200 190 180
170
160 150 140 130 120
110
90
80
70
-26
60
50
40
46
30
20
115
10
1.0 0.9 0.8
0
-10
Chapter 14 Solutions
General Chemistry - Standalone book (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell