Concept explainers
The acid-base indicator HIn undergoes the following reaction in dilute aqueous solution:
The following absorbance data were obtained for a 5.00 × I0-4 M solution of HIn in 0.1 M NaOH and 0.1 M HC1. Measurements were made at wavelengths of 485 nm and 625 nm with 1.00-cm cells.
-
0.1 M NaOH
A485 = 0.075
A625 = 0.904
0.1 M HC1 A485 = 0.487 A625 = 0.181
In the NaOH solution, essentially all of the indicator is present as In-; in the acidic solution, it is essentially all in the form of HIn.
(a) Calculate molar absorptivities for In- and HIn at 485 and 625 nm.
(b) Calculate the acid dissociation constant for the indicator ¡fa pH 5.00 buffer containing a small amount of the indicator exhibits an absorbance of 0.567 at 485 nm and 0.395 at 625 nm (1.00-cm cells).
(c) What is the pH of a solution containing a small amount of the indicator that exhibits an absorbance of0.492 at 485 nm and 0.245 at 635 nm (1.00-cm cells)?
(d) A 25.00-mL aliquot of a solution of purified weak organic acid HX required exactly 24.20 mL of a standard solution of a strong base to reach a phenolphthalein end point. When exactly 12.10 mL of the base was added to a second 25.00-mL aliquot of the acid, which contained a small amount of the Indicator under consideration, the absorbance was found to be 0.333 at 485 nm and 0.655 at 625 nm (1.00-cmcells). Calculate the pH of the solution and Ka for the weak acid.
(e) What would be the absorbance of a solution at 485 and 625 nm (1.50-cm cells) that was 2.00 × 10-4 M in the indicator and was buffered to a pH of 6.000?
(a)
Interpretation:
Molar absorptivities for In- and HIn at 485 and 625 nm should be calculated.
Concept introduction:
The Beer-Lambert Law is:
A − absorbance
l − length of the solution light passes through (cm)
c − concentration of solution (mol/L)
Answer to Problem 14.10QAP
At 484 nm,
At 625 nm,
Explanation of Solution
At 484 nm,
At 625 nm,
(b)
Interpretation:
The acid dissociation constant of the indicator should be calculated.
Concept introduction:
The Beer-Lambert Law is:
A − absorbance
l − length of the solution light passes through (cm)
c − concentration of solution (mol/L)
Answer to Problem 14.10QAP
Explanation of Solution
At 485 nm
At 625 nm
Solving the above equations as:
(c)
Interpretation:
pH of the solution should be calculated.
Concept introduction:
The formula used to determine the pH is:
Where,
Answer to Problem 14.10QAP
Explanation of Solution
At 485 nm
At 625 nm
(d)
Interpretation:
The pH of the solution and Ka for the weak acid should be determined.
Concept introduction:
The formula used to determine the pH is:
Where,
Answer to Problem 14.10QAP
Explanation of Solution
At 485 nm
At 625 nm
Since the HX solution is half neutralized
(e)
Interpretation:
Absorbance of a solution at 485 and 625 nm should be determined.
Concept introduction:
The Beer-Lambert Law is:
A − absorbance
l − length of the solution light passes through (cm)
c − concentration of solution (mol/L)
Answer to Problem 14.10QAP
Explanation of Solution
So,
Want to see more full solutions like this?
Chapter 14 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- n Feb 3 A T + 4. (2 pts) Draw the structure of the major component of the Limonene isolated. Explain how you confirmed the structure. 5. (2 pts) Draw the fragment corresponding to the base peak in the Mass spectrum of Limonene. 6. (1 pts) Predict the 1H NMR spectral data of R-Limonene. Proton NMR: 5.3 pon multiplet (H Ringarrow_forwardPart VI. Ca H 10 O is the molecular formula of compound Tom and gives the in the table below. Give a possible structure for compound Tom. 13C Signals summarized C1 C2 C3 C4 C5 C6 C7 13C shift (ppm) 23.5 27.0 33.0 35.8 127 162 205 DEPT-90 + DEPT-135 + +arrow_forward2. Using the following data to calculate the value of AvapH o of water at 298K. AvapH o of water at 373K is 40.7 kJ/mol; molar heat capacity of liquid water at constant pressure is 75.2J mol-1 K-1 and molar heat capacity of water vapor at constant pressure is 33.6 J mol-1 K-1.arrow_forward
- Part VII. Below are the 'HNMR 13 3 C-NMR, COSY 2D- NMR, and HSQC 20-NMR (Similar with HETCOR but axes are reversed) spectra of an organic compound with molecular formula C6H13 O. Assign chemical shift values to the H and c atoms of the compound. Find the structure. Show complete solutions. Predicted 1H NMR Spectrum ли 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 f1 (ppm)arrow_forward3. Draw the expanded structural formula, the condensed structural formula, and the skeletal structural formula for 2-pentene. expanded structure: Condensed structure: Skeletal formula: 4. Draw the expanded structural formula, the condensed structural formula, and the skeletal structural formula for 2-methyl-3-heptene. expanded structure: Condensed structure: Skeletal formula: following structurearrow_forwardPart IV. Propose a plausible Structure w/ the following descriptions: a) A 5-carbon hydrocarbon w/ a single peak in its proton decoupled the DEPT-135 Spectrum shows a negative peak C-NMR spectrum where b) what cyclohexane dione isomer gives the largest no. Of 13C NMR signals? c) C5H120 (5-carbon alcohol) w/ most deshielded carbon absent in any of its DEPT Spectivaarrow_forward
- 13C NMR is good for: a) determining the molecular weight of the compound b) identifying certain functional groups. c) determining the carbon skeleton, for example methyl vs ethyl vs propyl groups d) determining how many different kinds of carbon are in the moleculearrow_forward6 D 2. (1 pt) Limonene can be isolated by performing steam distillation of orange peel. Could you have performed this experiment using hexane instead of water? Explain. 3. (2 pts) Using GCMS results, analyze and discuss the purity of the Limonene obtained from the steam distillation of orange peel.arrow_forwardPart III. Arrange the following carbons (in blue) in order of increasing chemical shift. HO B NH 2 A CIarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning