Concept explainers
The acid-base indicator HIn undergoes the following reaction in dilute aqueous solution:
The following absorbance data were obtained for a 5.00 × I0-4 M solution of HIn in 0.1 M NaOH and 0.1 M HC1. Measurements were made at wavelengths of 485 nm and 625 nm with 1.00-cm cells.
-
0.1 M NaOH
A485 = 0.075
A625 = 0.904
0.1 M HC1 A485 = 0.487 A625 = 0.181
In the NaOH solution, essentially all of the indicator is present as In-; in the acidic solution, it is essentially all in the form of HIn.
(a) Calculate molar absorptivities for In- and HIn at 485 and 625 nm.
(b) Calculate the acid dissociation constant for the indicator ¡fa pH 5.00 buffer containing a small amount of the indicator exhibits an absorbance of 0.567 at 485 nm and 0.395 at 625 nm (1.00-cm cells).
(c) What is the pH of a solution containing a small amount of the indicator that exhibits an absorbance of0.492 at 485 nm and 0.245 at 635 nm (1.00-cm cells)?
(d) A 25.00-mL aliquot of a solution of purified weak organic acid HX required exactly 24.20 mL of a standard solution of a strong base to reach a phenolphthalein end point. When exactly 12.10 mL of the base was added to a second 25.00-mL aliquot of the acid, which contained a small amount of the Indicator under consideration, the absorbance was found to be 0.333 at 485 nm and 0.655 at 625 nm (1.00-cmcells). Calculate the pH of the solution and Ka for the weak acid.
(e) What would be the absorbance of a solution at 485 and 625 nm (1.50-cm cells) that was 2.00 × 10-4 M in the indicator and was buffered to a pH of 6.000?

(a)
Interpretation:
Molar absorptivities for In- and HIn at 485 and 625 nm should be calculated.
Concept introduction:
The Beer-Lambert Law is:
A − absorbance
l − length of the solution light passes through (cm)
c − concentration of solution (mol/L)
Answer to Problem 14.10QAP
At 484 nm,
At 625 nm,
Explanation of Solution
At 484 nm,
At 625 nm,

(b)
Interpretation:
The acid dissociation constant of the indicator should be calculated.
Concept introduction:
The Beer-Lambert Law is:
A − absorbance
l − length of the solution light passes through (cm)
c − concentration of solution (mol/L)
Answer to Problem 14.10QAP
Explanation of Solution
At 485 nm
At 625 nm
Solving the above equations as:

(c)
Interpretation:
pH of the solution should be calculated.
Concept introduction:
The formula used to determine the pH is:
Where,
Answer to Problem 14.10QAP
Explanation of Solution
At 485 nm
At 625 nm

(d)
Interpretation:
The pH of the solution and Ka for the weak acid should be determined.
Concept introduction:
The formula used to determine the pH is:
Where,
Answer to Problem 14.10QAP
Explanation of Solution
At 485 nm
At 625 nm
Since the HX solution is half neutralized

(e)
Interpretation:
Absorbance of a solution at 485 and 625 nm should be determined.
Concept introduction:
The Beer-Lambert Law is:
A − absorbance
l − length of the solution light passes through (cm)
c − concentration of solution (mol/L)
Answer to Problem 14.10QAP
Explanation of Solution
So,
Want to see more full solutions like this?
Chapter 14 Solutions
INSTRUMENTAL ANALYSIS-ACCESS >CUSTOM<
- When two solutions, one of 0.1 M KCl (I) and the other of 0.1 M MCl (II), are brought into contact by a membrane. The cation M cannot cross the membrane. At equilibrium, x moles of K+ will have passed from solution (I) to (II). To maintain the neutrality of the two solutions, x moles of Cl- will also have to pass from I to II. Explain this equality: (0.1 - x)/x = (0.1 + x)/(0.1 - x)arrow_forwardCalculate the variation in the potential of the Pt/MnO4-, Mn2+ pair with pH, indicating the value of the standard potential. Data: E0 = 1.12.arrow_forwardGiven the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt. Calculate the emf of the cell as a function of pH.arrow_forward
- The decimolar calomel electrode has a potential of 0.3335 V at 25°C compared to the standard hydrogen electrode. If the standard reduction potential of Hg22+ is 0.7973 V and the solubility product of Hg2Cl2 is 1.2x 10-18, find the activity of the chlorine ion at this electrode.Data: R = 8.314 J K-1 mol-1, F = 96485 C mol-1, T = 298.15 K.arrow_forward2. Add the following group of numbers using the correct number of significant figures for the answer. Show work to earn full credit such as rounding off the answer to the correct number of significant figures. Replace the question marks with the calculated answers or write the calculated answers near the question marks. 10916.345 37.40832 5.4043 3.94 + 0.0426 ? (7 significant figures)arrow_forwardThe emf at 25°C of the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt was 612 mV. When solution X was replaced by normal phosphate buffer solution with a pH of 6.86, the emf was 741 mV. Calculate the pH of solution X.arrow_forward
- Indicate how to calculate the potential E of the reaction Hg2Cl2(s) + 2e ⇄ 2Hg + 2Cl- as a function of the concentration of Cl- ions. Data: the solubility product of Hg2Cl2.arrow_forwardHow can Beer’s Law be used to determine the concentration in a selected food sample. Provide an in-depth discussion and examples of this.arrow_forwardb) H3C- H3C Me CH 3 I HN Me H+arrow_forward
- Using Luther's rule, determine the reference potentials of the electrodes corresponding to the low stability systems Co³+/Co and Cr²+/Cr from the data in the table. Electrodo ΕΝ Co²+/Co Co3+/Co²+ -0,28 +1,808 Cr³+ / Cr -0,508 Cr3+ / Cr²+ -0,41arrow_forwardThe molecule PYRIDINE, 6tt electrons and is there pore aromuntre and is Assigned the Following structure contenus Since aromatk moleculey undergo electrophilic allomatic substitution, Pyridine should undergo The Following reaction + HNO3 12504 a. write all of the possible Mononitration Products that could Result From this roaction Based upon the reaction the reaction mechanism determine which of these producty would be the major Product of the hegetionarrow_forwardUsing Benzene as starting materia Show how each of the Following molecules could Ve synthesked 9. CHI d. 10450 b 0 -50311 ८ City -5034 1-0-650 e NO2arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
