
Concept explainers
Three identical cars are being unloaded from an automobile carrier. Cars B and C have just been unloaded and are at rest with their brakes off when car A leaves the unloading ramp with a velocity of 5.76 ft/s and hits car B, which hits car C. Car A then again hits car B. Knowing that the velocity of car B is 5.04 ft/s after the first collision, 0.630 ft/s after the second collision, and 0.709 ft/s after the third collision, determine (a) the final velocities of cars A and C, (b) the coefficient of restitution for each of the collisions.
Fig. P14.105
(a)

Find the final velocity of the car A and C.
Answer to Problem 14.105RP
The final velocity of the car A and C are
Explanation of Solution
Given information:
Consider the mass of car A, car B, and C is denoted by m.
The initial velocity of the car is
The initial velocity of the car B and C is zero.
The velocity of the car B after the first, second and third collisions are
Calculation:
The Horizontal momentum of the system is conserved as no horizontal force is acting on the system.
Show the Event
Refer to Figure 1.
Show the conservation of horizontal momentum as follows:
Substitute
Show the Event
Refer to Figure 2.
Show the conservation of horizontal momentum as follows:
Substitute
Thus, the final velocity of the car C is
Show the Event
Refer to Figure 3.
Show the conservation of horizontal momentum as follows:
Substitute
Thus, the final velocity of the car A is
(b)

Find the coefficients of restitution of each collision.
Answer to Problem 14.105RP
The coefficients of restitution of first, second and third collision are
Explanation of Solution
Given information:
Calculation:
Refer Part (a).
Consider the coefficient of restitution corresponding to collision Event
Calculate the coefficient of restitution corresponding to collision Event
Substitute
Calculate the coefficient of restitution corresponding to collision Event
Substitute
Calculate the coefficient of restitution corresponding to collision Event
Substitute
Thus, the coefficients of restitution of first, second and third collision are
Want to see more full solutions like this?
Chapter 14 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- practise questionarrow_forwardCan you provide steps and an explaination on how the height value to calculate the Pressure at point B is (-5-3.5) and the solution is 86.4kPa.arrow_forwardPROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forward
- Find the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward
- 3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward
- (read image) (answer given)arrow_forwardA cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





