At high temperatures, a dynamic equilibrium exists between carbon monoxide, carbon dioxide, and solid carbon.
At 850°C, Kc is 0.153.
- a What is the value of Kp?
- b If the original reaction system consisted of just carbon and 1.50 atm of CO2, what are the pressures of CO2 and CO when equilibrium has been established?
- c How will the equilibrium pressure of CO change if the temperature is decreased?
(a)
Interpretation:
The equilibrium constant has to be found and the equilibrium partial pressures of the reactant and product also has to be found. The effect of decrease in temperature in the equilibrium constant has to be found.
Concept introduction:
Equilibrium constant
Consider the reaction where the reactant A is giving product B.
On rearranging,
Where,
Equilibrium constant
Where,
R is the universal gas constant
T is the temperature
Le Chatelier's principle: When a system at equilibrium is disturbed, the system will adjust itself to nullify the effect and maintain the equilibrium.
Answer to Problem 14.101QP
The equilibrium constant
Explanation of Solution
Given,
The equilibrium constant
To find the difference between the number of gaseous products and reactants
To find
The value of
(b)
Interpretation:
The equilibrium constant has to be found and the equilibrium partial pressures of the reactant and product also has to be found. The effect of decrease in temperature in the equilibrium constant has to be found.
Concept introduction:
Equilibrium constant
Consider the reaction where the reactant A is giving product B.
On rearranging,
Where,
Equilibrium constant
Where,
R is the universal gas constant
T is the temperature
Le Chatelier's principle: When a system at equilibrium is disturbed, the system will adjust itself to nullify the effect and maintain the equilibrium.
Answer to Problem 14.101QP
The partial pressure of
The partial pressure of
Explanation of Solution
Given,
The partial pressure of
The equilibrium constant
To find pressure of reactant and product at equilibrium.
Using the table approach, the equilibrium concentrations of the reactants and the products can be found.
The equilibrium pressure values are then substituted into the equilibrium expression to get the change in pressure x.
On rearranging we get a quadratic equation.
On solving the quadratic equation the value of x obtained.
On solving we get two values for x, the positive value for x is taken.
Hence,
(c)
Interpretation:
The equilibrium constant has to be found and the equilibrium partial pressures of the reactant and product also has to be found. The effect of decrease in temperature in the equilibrium constant has to be found.
Concept introduction:
Equilibrium constant
Consider the reaction where the reactant A is giving product B.
On rearranging,
Where,
Equilibrium constant
Where,
R is the universal gas constant
T is the temperature
Le Chatelier’s principle: When a system at equilibrium is disturbed, the system will adjust itself to nullify the effect and maintain the equilibrium.
Answer to Problem 14.101QP
For and endothermic reaction the rate of forward reaction decreases with the decrease in temperature. Hence, the reaction will shift towards the left and the partial pressure of carbon monoxide will be decreased
Explanation of Solution
According to Le Chatelier's principle a system at equilibrium is disturbed, it will try to get the equilibrium state back by nullifying the disturbance. The given reaction is an endothermic reaction. For and endothermic reaction the rate of forward reaction decreases with the decrease in temperature. Hence, the reaction will shift towards the left and the partial pressure of carbon monoxide will be decreased.
Want to see more full solutions like this?
Chapter 14 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Zeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning