
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 116RQ
To determine
The initial discharge rate and the time taken to empty the pool.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Newton's law of cooling. A thermometer, reading 5°C, is brought into a room whose
temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it
take until the reading is practically 22°C, say, 21.9°C?
Solve
a.
y' + 2xy = ex-x²
b. y' + y sin x = ecosx,
y(0) = −1
y(0) = −2.5
=
MMB 241 Tutorial 3.pdf
2/6
90%
+ +
5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in
seconds. Determine the magnitude of its acceleration when t = 10 s.
40 m
v = 0.0625²
6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25
m/s, determine the magnitude of its acceleration when it passes point B.
.A
90°
300 m n
B
2
Chapter 14 Solutions
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
Ch. 14 - Prob. 1PCh. 14 - Consider laminar flow in a circular pipe. Is the...Ch. 14 - What is hydraulic diameter? How is it defined?...Ch. 14 - How is the hydrodynamic entry length defined for...Ch. 14 - Why are liquids usually transported in circular...Ch. 14 - What is the physical significance of the Reynolds...Ch. 14 - Consider a person walking first in air and then in...Ch. 14 - Show that the Reynolds number for flow in a...Ch. 14 - Which fluid at room temperature requires a larger...Ch. 14 - How does surface roughness affect the pressure...
Ch. 14 - Shown here is a cool picture of water being...Ch. 14 - Someone claims that the volume flow rate in a...Ch. 14 - Someone claims that the average velocity in a...Ch. 14 - Someone claims that the shear stress at the center...Ch. 14 - Someone claims that in fully developed turbulent...Ch. 14 - How does the wall shear stress τw vary along the...Ch. 14 - In the fully developed region of flow in a...Ch. 14 - How is the friction factor for flow in a pipe...Ch. 14 - Discuss whether fully developed pipe flow is one-,...Ch. 14 - Consider fully developed flow in a circular pipe...Ch. 14 - Consider fully developed laminar flow in a...Ch. 14 - Explain why the friction factor is independent of...Ch. 14 - What is turbulent viscosity? What causes it?
Ch. 14 - Consider fully developed laminar flow in a...Ch. 14 - How is head loss related to pressure loss? For a...Ch. 14 - Consider laminar flow of air in a circular pipe...Ch. 14 - What is the physical mechanism that causes the...Ch. 14 - The velocity profile for the fully developed...Ch. 14 - Water flows steadily through a reducing pipe...Ch. 14 - Water at 10°C (ρ = 999.7 kg/m3 and μ = 1.307 ×...Ch. 14 - Consider an air solar collector that is 1 m wide...Ch. 14 - Heated air at 1 atm and 100°F is to be transported...Ch. 14 - In fully developed laminar flow in a circular...Ch. 14 - The velocity profile in fully developed laminar...Ch. 14 - Repeat Prob. 14–34 for a pipe of inner radius 7...Ch. 14 - Water at 15°C (ρ = 999.1 kg/m3 and μ = 1.138 ×...Ch. 14 - Consider laminar flow of a fluid through a square...Ch. 14 - Repeat Prob. 14–37 for turbulent flow in smooth...Ch. 14 - Air enters a 10-m-long section of a rectangular...Ch. 14 - Water at 70°F passes through...Ch. 14 - Oil with ρ = 876 kg/m3 and μ = 0.24 kg/m·s is...Ch. 14 - Glycerin at 40°C with ρ = 1252 kg/m3 and μ = 0.27...Ch. 14 - Air at 1 atm and 60°F is flowing through a 1 ft ×...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Oil with a density of 850 kg/m3 and kinematic...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Water is to be withdrawn from an 8-m-high water...Ch. 14 - Prob. 59PCh. 14 - Prob. 60PCh. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Consider two identical 2-m-high open tanks filled...Ch. 14 - A piping system involves two pipes of different...Ch. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Prob. 70PCh. 14 - The water needs of a small farm are to be met by...Ch. 14 - Prob. 72PCh. 14 - Prob. 73PCh. 14 - Prob. 74PCh. 14 - Prob. 75PCh. 14 - Prob. 76PCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 80PCh. 14 - Prob. 81PCh. 14 - A vented tanker is to be filled with fuel oil with...Ch. 14 - Two pipes of identical length and material are...Ch. 14 - Prob. 84PCh. 14 - Prob. 85PCh. 14 - Prob. 86PCh. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 90PCh. 14 - Prob. 91PCh. 14 - Prob. 92PCh. 14 - Prob. 93PCh. 14 - Prob. 94RQCh. 14 - Prob. 95RQCh. 14 - Prob. 96RQCh. 14 - Prob. 97RQCh. 14 - Prob. 98RQCh. 14 - Prob. 99RQCh. 14 - Repeat Prob. 14–99E assuming the pipe is inclined...Ch. 14 - Prob. 101RQCh. 14 - Prob. 102RQCh. 14 - Prob. 103RQCh. 14 - Prob. 104RQCh. 14 - Two pipes of identical diameter and material are...Ch. 14 - Prob. 106RQCh. 14 - Prob. 107RQCh. 14 - Prob. 108RQCh. 14 - Prob. 109RQCh. 14 - Prob. 110RQCh. 14 - Prob. 111RQCh. 14 - Prob. 112RQCh. 14 - Prob. 114RQCh. 14 - Prob. 115RQCh. 14 - Prob. 116RQCh. 14 - Prob. 118RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- = MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forwardThe population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward
- = MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forward
- Sketch and Describe a hatch coaming and show how the hatch coamings are framed in to ships strucure?arrow_forwardSketch and describe hatch coamings. Describe structrual requirements to deck plating to compensate discontinuity for corners of a hatch. Show what is done to the deck plating when the decks are cut away and include the supporting members.arrow_forwardAn Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height.arrow_forward
- a ship 150 m long and 20.5 m beam floats at a draught of8 m and displaces 19 500 tonne. The TPC is 26.5 and midshipsection area coefficient 0.94. Calculate the block, prismatic andwaterplane area coefficients.arrow_forwardA vessel loads 680 t fuel between forward and aft deep tanks. centre of gravity of forward tank is 24m forward of ships COG. centre to centre between tanks is 42 m. how much in each tank to keep trim the samearrow_forwardBeam of a vessel is 11% its length. Cw =0.72. When floating in SW of relative denisity 1.03, TPC is 0.35t greater than in freshwater. Find the length of the shiparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License