Concept explainers
When a diprotic acid, H2A, is titrated with NaOH, the protons on the diprotic acid are generally removed one at a time, resulting in a pH curve that has the following generic shape:
a. Notice that the plot has essentially two titration curves. If the first equivalence point occurs at 100.0 mL NaOH added, what volume of NaOH added corresponds to the second equivalence point?
b. For the following volumes of NaOH added, list the major species present after the OH− reacts completely.
i. 0 mL NaOH added
ii. between 0 and 100.0 mL NaOH added
iii. 100.0 mL NaOH added
iv. between 100.0 and 200.0 mL NaOH added
v. 200.0 mL NaOH added
vi. after 200.0 mL NaOH added
c. If the pH at 50.0 mL NaOH added is 4.0, and the pH at 150.0 mL NaOH added is 8.0, determine the values
Trending nowThis is a popular solution!
Chapter 14 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
Additional Science Textbook Solutions
Physics of Everyday Phenomena
Organic Chemistry
Fundamentals Of Thermodynamics
SEELEY'S ANATOMY+PHYSIOLOGY
Loose Leaf For Integrated Principles Of Zoology
Brock Biology of Microorganisms (15th Edition)
- When a diprotic acid, H2A. is titrated with NaOH, the protons on the diprotic acid are generally removed one at a time, resulting in a pH curve that has the following generic shape: a. Notice that the plot has essentially two titration curves. If the first equivalence point occurs at 100.0 mL NaOH added, what volume of NaOH added corresponds to the second equivalence point? b. For the following volumes of NaOH added, list the major species present after the OH reacts completely. i. 0 mL NaOH added ii. between 0 and 100.0 mL NaOH added iii. 100.0 mL NaOH added iv. between 100.0 and 200.0 niL NaOH added v. 200.0 mL NaOH added vi. after 200.0 mL NaOH added c. If the pH at 50.0 mL NaOH added is 4.0 and the pH at 150.0 mL NaOH added is 8.0, determine the values Ka1 and Ka2 for the diprotic acid.arrow_forwardA sodium hydrogen carbonate-sodium carbonate buffer is to be prepared with a pH of 9.40. (a) What must the [ HCO3 ]/[ CO32 ]ratio be? (b) How many moles of sodium hydrogen carbonate must be added to a liter of 0.225 M Na2CO3 to give this pH? (c) How many grams of sodium carbonate must be added to 475 mL of 0.336 M NaHCO3 to give this pH? (Assume no volume change.) (d) What volume of 0.200 M NaHCO3 must be added to 735 mL of a 0.139 M solution of Na2CO3 to give this pH? (Assume that volumes are additive.)arrow_forwarda Draw a pH titration curve that represents the titration of 25.0 mL of 0.15 M propionic acid. CH3CH2COOH, by the addition of 0.15 M KOH from a buret. Label the axes and put a scale on each axis. Show where the equivalence point and the buffer region are on the titration curve. You should do calculations for the 0%, 50%, 60%, and 100% titration points. b Is the solution neutral, acidic, or basic at the equivalence point? Why?arrow_forward
- A 30.0-mL sample of 0.05 M HClO is titrated by a 0.0250 M KOH solution Ka for HClO is 3.5 108. Calculate a the pH when no base has been added; b the pH when 30.00 mL of the base has been added; c the pH at the equivalence point; d the pH when an additional 4.00 mL of the KOH solution has been added beyond the equivalence point.arrow_forwardCalculate the pH during the titration of 50.00 mL of 0.100 M Sr(OH)2 with 0.100 M HNO3 after 0, 50.00, 100.00, and 150.00 mL nitric acid have been added. Graph the titration curve and compare with the titration curve obtained in Exercise 16.22.arrow_forwardMethyl orange, HMO, is a common acid-base indicator. In solution it ionizes according to the equation: HMOaqH+aq+MO-aqredyellow If methyl orange is added to distilled water, the solution turns yellow. If 1 drop or two of 6 M HCl is added to the yellow solution, it turns red. If to that solution one adds a few drops of 6 M NaOH, the color reverts to yellow. a. Why does adding 6 M HCl to the yellow solution of methyl orange tend to cause the color to change to red? Note that in solution HCl exists as H+ and Cl- ions. b. Why does adding 6 M NaOH to the red solution tend to make it turn back to yellow? Note that in solution NaOH exists as Na+ and OH- ions. How does increasing OH- shift Reaction 3 in the discussion section? How would the resulting change in H+ affect the dissociation reaction of HMO?arrow_forward
- A 0.400-g sample of propionic acid was dissolved in water to give 50.0 mL of solution. This solution was titrated with 0.150 M NaOH. What was the pH of the solution when the equivalence point was reached?arrow_forwardKa for formic acid is 1.7 104 at 25C. A buffer is made by mixing 529 mL of 0.465 M formic acid, HCHO2, and 494 mL of 0.524 M sodium formate, NaCHO2. Calculate the pH of this solution at 25C after 110 mL of 0.152 M HCl has been added to this buffer.arrow_forwardWhen a diprotic acid. H2A. is titrated with NaOH, the protons on the diprotic acid are generally removed one at a time, resulting in a pH curve that has the following generic shape: a. Notice that the plot has essentially two titration curves. If the first equivalence point occurs at 100.0 mL NaOH added, what volume of NaOH added corresponds to the second equivalence point? b. For the following volumes of NaOH added, list the major species present after the OH reacts completely. i. 0 mL NaOH added ii. between 0 and 100.0 mL NaOH added iii. 100.0 mL NaOH added iv. between 100.0 and 200.0 mL NaOH added v. 200.0 mL NaOH added vi. after 200.0 mL NaOH added c. If die pH at 50.0 mL NaOH added is 4.0 and the pH at 150.0 mL NaOH added is 8.0, determine the values Ka and Ka. for the diprotic acid. d.arrow_forward
- Consider the titration of 100.0 mL of 0.10 M H3AsO4 by 0.10 M NaOH. What are the major species present at 50.0 mL of NaOH added? How would you calculate the pH at this point? Answer the same questions for 150.0 mL of NaOH added. At what volume of NaOH added does pH = pKa1?arrow_forwardRepeat the procedure in Exercise 61, but for the titration of 25.0 mL of 0.100 M pyridine with 0.100 M hydrochloric acid (Kb for pyridine is 1.7 109). Do not calculate the points at 24.9 and 25.1 mL.arrow_forwardYou have 0.10-mol samples of three acids identified simply as HX, HY, and HZ. For each acid, you make up 0.10 M solutions by adding sufficient water to each of the acid samples. When you measure the pH of these samples, you find that the pH of HX is greater than the pH of HY, which in turn is greater than the pH of HZ. a Which of the acids is the least ionized in its solution? b Which acid has the largest Kd?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning