Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 10RQ
To determine
The reason for powerful magnetic field of neutron stars than that of white dwarfs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why do you expect neutron stars to spin rapidly?
In a nova, why is the shell of hydrogen on the white dwarf consumed explosively rather than steadily?
What is the surface gravity on the surface of White Dwarf of 1 Solar Mass? What about
a Neutron Star of the same mass? What about at the event horizon radius of a Black
Hole of the same mass? In each case, give the surface gravity as a ratio of the Earth's
surface gravity.
Chapter 14 Solutions
Foundations of Astronomy
Ch. 14 - Prob. 1RQCh. 14 - Prob. 2RQCh. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - Prob. 8RQCh. 14 - Prob. 9RQCh. 14 - Prob. 10RQ
Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - If the Sun has a Schwarzschild radius, why isnt it...Ch. 14 - Prob. 18RQCh. 14 - Prob. 19RQCh. 14 - Prob. 20RQCh. 14 - Prob. 21RQCh. 14 - In what sense is a black hole actually black?Ch. 14 - If you are falling into a black hole and you point...Ch. 14 - Prob. 24RQCh. 14 - Prob. 25RQCh. 14 - Prob. 26RQCh. 14 - How Do We Know? How does peer review make fraud...Ch. 14 - Prob. 1DQCh. 14 - Prob. 2DQCh. 14 - Prob. 3DQCh. 14 - Prob. 4DQCh. 14 - Prob. 5DQCh. 14 - Prob. 6DQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 1LTLCh. 14 - Prob. 2LTLCh. 14 - Prob. 3LTLCh. 14 - Prob. 4LTLCh. 14 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How does a white dwarf differ from a neutron star? How does each form? What keeps each from collapsing under its own weight?arrow_forwardHow would the spectra of a type II supernova be different from a type Ia supernova? Hint: Consider the characteristics of the objects that are their source.arrow_forwardWhat is the average density of the white dwarf in Exercise 23.35? How does it compare to the average density of Earth?arrow_forward
- If the formation of a neutron star leads to a supernova explosion, explain why only three of the hundreds of known pulsars are found in supernova remnants.arrow_forwardHow would a white dwarf that formed from a star that had an initial mass of 1 MSunbe different from a white dwarf that formed from a star that had an initial mass of 9 MSun?arrow_forwardIf an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every 15.4 days, what is their average separation? (Hint: Use the version of Keller's third law for binary stars, Ma + Mb = a^3 /p^2 ; make sure you express quantities in unites of AU, solar masses, and years. Assume the mass of a neutron Star is 1.6 solar masses.) ___________ AUarrow_forward
- Generally speaking, a low-mass star ends up as a white dwarf while a high-mass explodes. Why/How does the amount of mass determine the star's fate?arrow_forwardA 1.8 M neutron and a 0.7 M white dwarf have been found orbiting each other with a period of 28 minutes. What is their average separation? Convert your answer to units of the Suns radius, which is 0.0047 AU. (hint: Use the version of Keller's third law for the binary stars Ma + Mb = a^3/p^2 ; make sure you express quantities in unites of AU, solar masses, and years. NOTE: a year is 3.2 x 10^7 s) ___________ solar radiiarrow_forwardWe learned in class that, when stars collapse under their own gravity, they conserve angular momentum, which is proportional to mass times radius times rotational speed. Suppose the entire sun (radius 695,700 km) were to collapse to a neutron star with a radius of only 10 km. Before the collapse, the rotational speed at the equator = 2.0 km/s, and the rotational period is 25 days. Using the same steps that you used for the white dwarf calculations, calculate the final rotation period if the entire sun were to collapse to a 10 km radius neutron star. Give your answer in units of seconds. Answer: Checkarrow_forward
- If a neutron Star has a radius of 12 km and a temperature of 8.0 x 10^6 K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation L/L= (R/R)^2(T/T)^4 . Use 5,800 K for the surface temperature of the Sun. The luminosity of the sun is 3.83 x 10^26W) luminosity in watts ________ W luminosity in solar luminosity units ______ Larrow_forwardSay that a white dwarf has about the same radius as the earth and about the same mass as the sun. Quantitatively compare the bulk density of the white dwarf to the bulk density of the sun.arrow_forwardA typical white dwarf has a mass of about 1.0MSunMSun and the radius of Earth (about 6400 kilometers). Calculate the average density of a white dwarf, in kilograms per cubic centimeter.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning