Concept explainers
(a)
The force exerted by the water on the bottom of the pool.
(a)
Answer to Problem 10P
The force exerted by the water on the bottom of the pool is
Explanation of Solution
Given that the dimension of the pool is
Write the expression for the pressure at the bottom of the pool due to the water in it.
Here,
Write the expression for the force exerted by the water on the bottom of the pool.
Here,
Use equation (II) in (I).
Conclusion:
Substitute
The force on the bottom of the pool is directed downward.
Therefore, the force exerted by the water on the bottom of the pool is
(b)
The force exerted by the water on each end of the pool.
(b)
Answer to Problem 10P
The force exerted by the water on each end of the pool is
Explanation of Solution
Given that the dimension of the pool is
Equation (I) gives the expression for the pressure at the bottom of the pool due to the water in it.
The pressure varies with depth. One a strip of height
Write the expression for the elemental area of the strip.
Use equation (I) and (V) in (IV).
Integrate equation (VI) with limits from
Write the expression for the average pressure of water in a region with height
The product
For each ends of the pool, the length is
Conclusion:
Substitute
Substitute
The force on each end of the pool is directed outward.
Therefore, the force exerted by the water on each end of the pool is
(c)
The force exerted by the water on each side of the pool.
(c)
Answer to Problem 10P
The force exerted by the water on each side of the pool is
Explanation of Solution
Given that the dimension of the pool is
Equation (IX) gives the force exerted by water at a given part of the pool.
For each side of the pool, the length is
Conclusion:
Substitute
The force on each side of the pool is directed outward.
Therefore, the force exerted by the water on each side of the pool is
Want to see more full solutions like this?
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College