a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 3 4 x − 2
a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 3 4 x − 2
Solution Summary: The author illustrates the graph of the function f(x)=34x-2.
a
->
f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem)
Muslim_maths
Use Green's Theorem to evaluate F. dr, where
F = (√+4y, 2x + √√)
and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to
(0,0).
Evaluate
F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line
π 1
1
segment starting at the point (8,
'
and ending at the point (3,
2
3'6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY