BIO The Love Song of the Midshipman Fish When the plainfin midshipman fish ( Porichthys notatus ) migrates from deep Pacific waters to the west coast of North America each summer, the males begin to sing their “love song,” which some describe as sounding like a low-pitched motorboat. Houseboat residents and shore dwellers are kept awake for nights on end by the amorous fish. The love song consists of a single note, the second A flat below middle C. (a) If the speed of sound in seawater is 1531 m/s, what is the wavelength of the midshipman’s song? (b) What is the wavelength of the sound after it emerges into the air? (Information on the musical scale is given in Table 14-3 .)
BIO The Love Song of the Midshipman Fish When the plainfin midshipman fish ( Porichthys notatus ) migrates from deep Pacific waters to the west coast of North America each summer, the males begin to sing their “love song,” which some describe as sounding like a low-pitched motorboat. Houseboat residents and shore dwellers are kept awake for nights on end by the amorous fish. The love song consists of a single note, the second A flat below middle C. (a) If the speed of sound in seawater is 1531 m/s, what is the wavelength of the midshipman’s song? (b) What is the wavelength of the sound after it emerges into the air? (Information on the musical scale is given in Table 14-3 .)
BIO The Love Song of the Midshipman Fish When the plainfin midshipman fish (Porichthys notatus) migrates from deep Pacific waters to the west coast of North America each summer, the males begin to sing their “love song,” which some describe as sounding like a low-pitched motorboat. Houseboat residents and shore dwellers are kept awake for nights on end by the amorous fish. The love song consists of a single note, the second A flat below middle C. (a) If the speed of sound in seawater is 1531 m/s, what is the wavelength of the midshipman’s song? (b) What is the wavelength of the sound after it emerges into the air? (Information on the musical scale is given in Table 14-3.)
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.