a) 436 HZ
Interpretation:
Many nuclei have spin and all nuclei are electrically charged. If an external magnetic field is applied, an energy transfer is possible between the ground energy to a higher energy level.
Concept introduction:
The exact frequency necessary for resonance depends both on the strength of the external magnetic field, the identity of the nucleus, and the electronic environment of the nucleus. If a very strong magnetic field is applied, the energy difference between the two spin states is larger and higher-frequency (higher-energy) radiation is required for a spin-flip. If a weaker magnetic field is applied, less energy is required to effect the transition between nuclear spin states.
b) 956 HZ
Interpretation:
Many nuclei have spin and all nuclei are electrically charged. If an external magnetic field is applied, an energy transfer is possible between the ground energy to a higher energy level.
Concept introduction:
The exact frequency necessary for resonance depends both on the strength of the external magnetic field, the identity of the nucleus, and the electronic environment of the nucleus. If a very strong magnetic field is applied, the energy difference between the two spin states is larger and higher-frequency (higher-energy) radiation is required for a spin-flip. If a weaker magnetic field is applied, less energy is required to effect the transition between nuclear spin states.
c) 1504 HZ
Interpretation:
Many nuclei have spin and all nuclei are electrically charged. If an external magnetic field is applied, an energy transfer is possible between the ground energy to a higher energy level.
Concept introduction:
The exact frequency necessary for resonance depends both on the strength of the external magnetic field, the identity of the nucleus, and the electronic environment of the nucleus. If a very strong magnetic field is applied, the energy difference between the two spin states is larger and higher-frequency (higher-energy) radiation is required for a spin-flip. If a weaker magnetic field is applied, less energy is required to effect the transition between nuclear spin states.

Want to see the full answer?
Check out a sample textbook solution
Chapter 13 Solutions
ORGANIC CHEMISTRY W/OWL
- H3C. H3C CH 3 CH 3 CH3 1. LDA 2. PhSeCl 3. H2O2arrow_forwardPlease predict the products for each of the following reactions: 1.03 2. H₂O NaNH, 1. n-BuLi 2. Mel A H₂ 10 9 0 H2SO4, H₂O HgSO4 Pd or Pt (catalyst) B 9 2 n-BuLi ♡ D2 (deuterium) Lindlar's Catalyst 1. NaNH2 2. EtBr Na, ND3 (deuterium) 2. H₂O2, NaOH 1. (Sia)2BH с Darrow_forwardin the scope of ontario SCH4U grade 12 course, please show ALL workarrow_forward
- Is the chemical reaction CuCl42-(green) + 4H2O <==> Cu(H2O)42+(blue) + 4Cl- exothermic or endothermic?arrow_forwardIf we react tetraethoxypropane with hydrazine, what is the product obtained (explain its formula). State the reason why the corresponding dialdehyde is not used.arrow_forwarddrawing, no aiarrow_forward
- If CH3COCH2CH(OCH3)2 (4,4-dimethoxy-2-butanone) and hydrazine react, two isomeric products are formed. State their structure and which will be the majority.arrow_forward+ Reset Provide the correct IUPAC name for the compound shown here. 4-methylhept-2-ene (Z)- (E)- 1-6-5-2-3-4- cyclo iso tert- sec- di tri hept hex oct meth eth pent ane yne ene ylarrow_forward+ Provide the correct IUPAC name for the compound shown here. Reset H3C H H C CH3 CH-CH3 1-3-methylpent ene trans- cis- 5-6-3-1-2-4- tert- tri sec- di cyclo iso but pent hex meth prop eth yl ane ene yne ☑arrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning



