Thomas' Calculus
4th Edition
ISBN: 9780134439099
Author: Hass, Joel., Heil, Christopher , WEIR, Maurice D.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.6, Problem 6E
To determine
Calculate the velocity and acceleration
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
R₂ = X2
2) slots per pole per phase = 3/31
B-18060
msl
kd
Kasi
Sin (1)
I sin (6)
sin(30)
Sin (30)
اذا ميريد شرح الكتب بس 0 بالفراغ
3) Cos (30) 0.866
4) Rotating
5) Synchronous speed
s = 1000-950
1000
Copper losses: 5kw
Rotor input 5
0.05
6) 1
120 x 50
G
loo kw
ined sove in peaper
I need a detailed
solution on paper
please
Q3// x²y// +xy/ + (x² - ½) y = x³/².
اذا ميريد شرح الكتب فقط look
7) rotor
DC
Q4// x²y// - (2x+x²)y/ + (2 + x)y = x³.
dy
2x+2y+4
=
dx
2x-y-3
۳/۱
R2X2
2) slots per pole per phase = 3/31
B, 18060
msl
Kas
Sin()
1sin()
sin(30)
Sin (30)
kd
اذا ميريد شرح الكتب بس 0 بالفراغ
3) Cos (30) 0.866
4) Rotating
5) Synchronous speeds
S = 1000-950
1000
Copper bosses 5kw
120*50
loca
G
Rotor input 5
loo kw
6) 1
0.05
اذا ميريد شرح الكتب فقط lookw
7) rotor
DC
ined sove in peaper
I need a detailed
solution on paper
please
064
Q1// Find the solution of
QI/Find the solution of
Inxy=
7357
x+2y³
y' =
xy3
R₂ = X2
2) slots per pole per phase 3/31
msl
180
60
Kd
Ka Sin (1)
Isin (6)
sin(30)
Sin (30)
اذا ميريد شرح الكتب بس 0 بالفراغ
3) Cos (30) 0.866
4) Rotating
5) Synchronous speed,
120*50
1000
6
S = 1000-950
1000
Copper bosses: 5kw
Rotor input 5
0.05
: loo kw
6) 1
اذا ميريد شرح الكتب فقط 100
7) rotor
DC
ined sove in peaper
I need a detailed
solution on paper
please
Find the general solution of the following equations:
Q2lyl-4y+13y=esinx.
Find the general solution of the following equations:
"
Qly (49) - 16y=
0.
151
Chapter 13 Solutions
Thomas' Calculus
Ch. 13.1 - In Exercises 1–4, find the given limits.
1.
Ch. 13.1 - In Exercises 1–4, find the given limits.
2.
Ch. 13.1 - In Exercises 1–4, find the given limits.
3.
Ch. 13.1 - In Exercises 1–4, find the given limits.
4.
Ch. 13.1 - Motion in the Plane
In Exercises 5–8, r(t) is the...Ch. 13.1 - Motion in the Plane
In Exercises 5–8, r(t) is the...Ch. 13.1 - In Exercises 5–8, r(t) is the position of a...Ch. 13.1 - In Exercises 5–8, r(t) is the position of a...Ch. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Exercises 9–12 give the position vectors of...Ch. 13.1 - Prob. 12ECh. 13.1 - In Exercises 13–18, r(t) is the position of a...Ch. 13.1 - In Exercises 13–18, r(t) is the position of a...Ch. 13.1 - In Exercises 13–18, r(t) is the position of a...Ch. 13.1 - In Exercises 13–18, r(t) is the position of a...Ch. 13.1 - In Exercises 13–18, r(t) is the position of a...Ch. 13.1 - In Exercises 13–18, r(t) is the position of a...Ch. 13.1 - In Exercises 19–22, r(t) is the position of a...Ch. 13.1 - In Exercises 19–22, r(t) is the position of a...Ch. 13.1 - In Exercises 19–22, r(t) is the position of a...Ch. 13.1 - Prob. 22ECh. 13.1 - As mentioned in the text, the tangent line to a...Ch. 13.1 - Tangents to Curves
As mentioned in the text, the...Ch. 13.1 - Tangents to Curves
As mentioned in the text, the...Ch. 13.1 - Tangents to Curves
As mentioned in the text, the...Ch. 13.1 - In Exercises 27-30, find the value(s) of t so that...Ch. 13.1 - In Exercises 27-30, find the value(s) of t so that...Ch. 13.1 - In Exercises 27-30, find the value(s) of t so that...Ch. 13.1 - In Exercises 27-30, find the value(s) of t so that...Ch. 13.1 - In Exercises 31–36, r(t) is the position of a...Ch. 13.1 - In Exercises 31–36, r(t) is the position of a...Ch. 13.1 - In Exercises 31–36, r(t) is the position of a...Ch. 13.1 - In Exercises 31–36, r(t) is the position of a...Ch. 13.1 - Prob. 35ECh. 13.1 - In Exercises 31–36, r(t) is the position of a...Ch. 13.1 - Motion along a circle Each of the following...Ch. 13.1 - Motion along a circle Show that the vector-valued...Ch. 13.1 - Motion along a parabola A particle moves along the...Ch. 13.1 - Motion along a cycloid A particle moves in the...Ch. 13.1 - Let r be a differentiable vector function of t....Ch. 13.1 - Prob. 42ECh. 13.1 - Prob. 43ECh. 13.1 - Prob. 44ECh. 13.1 - Prob. 45ECh. 13.1 - Limits of cross products of vector functions...Ch. 13.1 - Differentiable vector functions are continuous...Ch. 13.1 - Constant Function Rule Prove that if u is the...Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
1.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
2.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
3.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
4.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
5.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
6.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
7.
Ch. 13.2 - Prob. 8ECh. 13.2 - Evaluate the integrals in Exercises 1–10.
9.
Ch. 13.2 - Evaluate the integrals in Exercises 1–10.
10.
Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - At time t = 0, a particle is located at the point...Ch. 13.2 - Prob. 22ECh. 13.2 - Travel time A projectile is fired at a speed of...Ch. 13.2 - Range and height versus speed
Show that doubling a...Ch. 13.2 - Flight time and height A projectile is fired with...Ch. 13.2 - Throwing a baseball A baseball is thrown from the...Ch. 13.2 - Firing golf balls A spring gun at ground level...Ch. 13.2 - Prob. 28ECh. 13.2 - Equal-range firing angles What two angles of...Ch. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Colliding marbles The accompanying figure shows an...Ch. 13.2 - Firing from (x0, y0) Derive the equations
(see...Ch. 13.2 - Where trajectories crest For a projectile fired...Ch. 13.2 -
Launching downhill An ideal projectile is...Ch. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 38ECh. 13.2 - Prob. 39ECh. 13.2 - The view from Skylab 4 What percentage of Earth’s...Ch. 13.2 - Solve the initial value problems in Exercises...Ch. 13.2 - Hitting a baseball with linear drag Consider the...Ch. 13.2 - Prob. 43ECh. 13.2 - Products of scalar and vector functions Suppose...Ch. 13.2 - Antiderivatives of vector functions
Use Corollary...Ch. 13.2 - The Fundamental Theorem of Calculus The...Ch. 13.2 -
Hitting a baseball with linear drag under a wind...Ch. 13.2 - Prob. 48ECh. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 13.3 - Find the point on the curve
at a distance 26...Ch. 13.3 -
Find the point on the curve
r(t) = (12 sin t)i −...Ch. 13.3 - In Exercises 11–14, find the arc length parameter...Ch. 13.3 - In Exercises 11–14, find the arc length parameter...Ch. 13.3 - In Exercises 11–14, find the arc length parameter...Ch. 13.3 - In Exercises 11–14, find the arc length parameter...Ch. 13.3 - Arc length Find the length of the curve
from (0,...Ch. 13.3 - Length of helix The length of the turn of the...Ch. 13.3 - Length is independent of parametrization To...Ch. 13.3 - The involute of a circle If a siring wound around...Ch. 13.3 - (Continuation of Exercise 19.) Find the unit...Ch. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 13.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 13.4 - Prob. 3ECh. 13.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 13.4 - A formula for the curvature of the graph of a...Ch. 13.4 - A formula for the curvature of a parametrized...Ch. 13.4 -
Normals to plane curves
Show that n(t) = −g′(t)i...Ch. 13.4 - (Continuation of Exercise 7.)
Use the method of...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Find T, N, and κ for the space curves in Exercises...Ch. 13.4 - Show that the parabola , has its largest curvature...Ch. 13.4 - Show that the ellipse x = a cos t, y = b sin t, a...Ch. 13.4 - Maximizing the curvature of a helix In Example 5,...Ch. 13.4 - Prob. 20ECh. 13.4 - Find an equation for the circle of curvature of...Ch. 13.4 - Find an equation for the circle of curvature of...Ch. 13.4 - Prob. 23ECh. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Osculating circle Show that the center of the...Ch. 13.4 - Osculating circle Find a parametrization of the...Ch. 13.5 - In Exercises 1 and 2, write a in the form a = aTT...Ch. 13.5 - In Exercises 1 and 2, write a in the form a = aTT...Ch. 13.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 13.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 13.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 13.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 13.5 - In Exercises 7 and 8, find r, T, N, and B at the...Ch. 13.5 - In Exercises 7 and 8, find r, T, N, and B at the...Ch. 13.5 - In Exercises 9–16 of Section 13.4, you found T, N,...Ch. 13.5 - Prob. 10ECh. 13.5 - In Exercises 9–16 of Section 13.4, you found T, N,...Ch. 13.5 - In Exercises 9–16 of Section 13.4, you found T, N,...Ch. 13.5 - In Exercises 9–16 of Section 13.4, you found T, N,...Ch. 13.5 - Prob. 14ECh. 13.5 - In Exercises 9–16 of Section 13.4, you found T, N,...Ch. 13.5 - In Exercises 9–16 of Section 13.4, you found T, N,...Ch. 13.5 - Prob. 17ECh. 13.5 - Prob. 18ECh. 13.5 - Prob. 19ECh. 13.5 - Prob. 20ECh. 13.5 - Prob. 21ECh. 13.5 - Prob. 22ECh. 13.5 - A sometime shortcut to curvature If you already...Ch. 13.5 - What can be said about the torsion of a smooth...Ch. 13.5 - Differentiable curves with zero torsion lie in...Ch. 13.5 - A formula that calculates τ from B and v If we...Ch. 13.6 - In Exercises 1–7, find the velocity and...Ch. 13.6 - In Exercises 1–7, find the velocity and...Ch. 13.6 - In Exercises 1–7, find the velocity and...Ch. 13.6 - In Exercises 1–7, find the velocity and...Ch. 13.6 - In Exercises 1–7, find the velocity and...Ch. 13.6 - In Exercises 1–7, find the velocity and...Ch. 13.6 - Prob. 7ECh. 13.6 - Prob. 8ECh. 13.6 - Circular orbits Show that a planet in a circular...Ch. 13.6 - Prob. 10ECh. 13.6 - Prob. 11ECh. 13.6 - Do the data in the accompanying table support...Ch. 13.6 - Prob. 13ECh. 13.6 - Prob. 14ECh. 13.6 - Prob. 15ECh. 13.6 - Prob. 16ECh. 13.6 - Prob. 17ECh. 13.6 - Prob. 18ECh. 13 - Prob. 1GYRCh. 13 - How do you define and calculate the velocity,...Ch. 13 - Prob. 3GYRCh. 13 - Prob. 4GYRCh. 13 - Prob. 5GYRCh. 13 - Prob. 6GYRCh. 13 - Prob. 7GYRCh. 13 - Define curvature, circle of curvature (osculating...Ch. 13 - Prob. 9GYRCh. 13 - Prob. 10GYRCh. 13 - Prob. 11GYRCh. 13 - Prob. 12GYRCh. 13 - Prob. 13GYRCh. 13 - In Exercises 1 and 2, graph the curves and sketch...Ch. 13 - Prob. 2PECh. 13 - Prob. 3PECh. 13 - Prob. 4PECh. 13 - Finding curvature At point P, the velocity and...Ch. 13 - Prob. 6PECh. 13 - Prob. 7PECh. 13 - Prob. 8PECh. 13 - Prob. 9PECh. 13 - Speed along a cycloid A circular wheel with radius...Ch. 13 - Prob. 11PECh. 13 - Javelin A javelin leaves the thrower’s hand 7 ft...Ch. 13 - Prob. 13PECh. 13 - Javelin In Potsdam in 1988, Petra Felke of (then)...Ch. 13 - Prob. 15PECh. 13 - Find the lengths of the curves in Exercises 15 and...Ch. 13 - Prob. 17PECh. 13 - Prob. 18PECh. 13 - In Exercises 17-20, find T, N, B, and k at the...Ch. 13 - Prob. 20PECh. 13 - In Exercises 21 and 22, write a in the form a =...Ch. 13 - Prob. 22PECh. 13 - Prob. 23PECh. 13 - Prob. 24PECh. 13 - Prob. 25PECh. 13 - Prob. 26PECh. 13 - Find parametric equations for the line that is...Ch. 13 - Find parametric equations for the line that is...Ch. 13 - Prob. 29PECh. 13 - Prob. 30PECh. 13 - Prob. 31PECh. 13 - The view from Skylab 4 What percentage of Earth’s...Ch. 13 - Prob. 1AAECh. 13 - Suppose the curve in Exercise 1 is replaced by the...Ch. 13 - Prob. 3AAECh. 13 - Prob. 4AAECh. 13 - Prob. 5AAECh. 13 - Express the curvature of a twice-differentiable...Ch. 13 - Prob. 7AAECh. 13 - Prob. 8AAECh. 13 - Unit vectors for position and motion in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- ۳/۱ R₂ = X2 2) slots per pole per phase = 3/31 B-18060 msl kd Kasi Sin (1) I sin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed s = 1000-950 1000 Copper losses: 5kw Rotor input 5 0.05 6) 1 120 x 50 G loo kw اذا میرید شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper dy please 04 12=-cosx.y + 2cosx with y(x) = 1 か 'Oy + xlny + xe")dx + (xsiny + xlnx +*dy=0. 01arrow_forward٣/١ R2X2 2) slots per pole per phase = 3/31 B, 18060 msl kd Kas Sin (1) 1sin() sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speeds S = 1000-950 1000 Copper bosses 5kw 120*50 loca G Rotor input 5 loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط lookw 7) rotor ined sove in peaper I need a detailed solution on paper please DC 口 04 on its wheels as shown in figure. The the door is 8 m below the free surface o is located at the center of the d no water leaks an accident and lands at the bottom of the lake 12m high and I m wide, and the top edge of water Determine the hydrostatic force on the discuss if the driver can open the door, if ong person can lift 100 kg, the passenger The door can be approximated as a vertical rec | 279|-|(23+2+12+20=2) AA Find the general solution of the following equations: 11 - 1/4+xy/-(1-x²³)= 0. 2arrow_forward۳/۱ : +0 العنوان I need a detailed drawing with explanation R₂ = X2 2) slots per pole per phase 3/31 Le msl 180 60 Kd Ka Sin (1) Isin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120*50 1000 6 S = 1000-950 1000 Copper bosses: 5kw Rotor input 5 loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط ١٥٠ 7) rotov DC ined sove in peaper I need a detailed solution on paper please 064 Q1// Find the solution of: ( texty Q1// Find the solution of: '' y' -2y= 22% √y³arrow_forward
- R2X2 2) slots per pole per phase = 3/31 B-180-60 msl kd Ka, Sin (1) I sin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed s = 1000-950 1000 Copper losses 5kw 120 50 G Rotor input 5 loo kw 6) 1 ۳/۱ 0.05 إذا ميريد شرح الكتب فقط look 7) rotov DC ined sove in peaper I need a detailed solution on paper please Find the general solution of the following equations: " yll + 4y = tan2x. Find the general solution of the following equations: 01-24+7=0 T el [A] G ха =T Marrow_forwardR₂ = X2 2) slots per pole per phase = 3/31 B-18060 msl kd Kasi Sin (1) I sin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed s = 1000-950 1000 Copper losses: 5kw Rotor input 5 0.05 6) 1 120 x 50 G loo kw اذا میرید شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper please 0 64 Solve the following equations: = dx x²+y2 with y(0) = 1. 7357 Solve the following equations: dy x³+3xy² Q1// = dx 3x²y+y³° 01arrow_forward٣/١ R2X2 2) slots per pole per phase = 3/3 1 B18060 msl Kd 3 Kol Sin (1) 1sin() sin(30) Sin (30) اذا میرید شرح الكتب بس 0 بالفراغ 3) cos (30) 0.866 4) Rotating 5) Synchronous speeds 120*50 G looo 1000-950 1000 50:05 Copper losses: 5kw Rotor input 5 loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper please 0 64 (Find the solution of the initial-valued problems: xy' + 2y = x³e* ;y(1) = 0 Q1// Find the solution of: (1) y' + ytqpx = see²x y³arrow_forward
- A fluid has density 800 kg/m³ and flows with velocity v = xi + yj + zk, where x, y, and z are measured in meters, and the components of u are measured in meters per second. Find the rate of flow outward through the part of the paraboloid z = 64 - x² - y² that lies above the xy plane.arrow_forward۳/۱ : +0 العنوان I need a detailed drawing with explanation R₂ = X2 2) slots per pole per phase 3/31 Le msl 180 60 Kd Ka Sin (1) Isin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 S = 1000-950 1000 Copper bosses: 5kw Rotor input 5 6 : loo kw 6) 1 0.05 اذا ميريد شرح الكتب فقط 100 7) rotor DC 1000 ined sove in peaper I need a detailed solution on paper please // Find the solution of: |(2xy³ + 4x)y' = x²y² + y² 351 // Find the solution of: (1) 2xyy' = 1+ y² 01 175 T Τ Marrow_forwardFind the flux of the vector field F = (y,−x, 2²) through the helicoid with parameterization r(u, v) = (u cos v, u sin v, v) 0 ≤ u≤ 3, 0 ≤v≤ oriented away from the origin.arrow_forward
- 5. The graph of ƒ is given below. Sketch a graph of f'. 6. The graph of ƒ is given below. Sketch a graph of f'. 0 x 7. The graph of ƒ is given below. List the x-values where f is not differentiable. 0 A 2 4arrow_forward2. DRAW a picture, label using variables to represent each component, set up an equation to relate the variables, then differentiate the equation to solve the problem below. The top of a ladder slides down a vertical wall at a rate of 0.15 m/s. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s. How long is the ladder?arrow_forwardPlease answer all questions and show full credit pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Inner Product Spaces; Author: Jeff Suzuki: The Random Professor;https://www.youtube.com/watch?v=JzCZUx9ZTe8;License: Standard YouTube License, CC-BY