![Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)](https://www.bartleby.com/isbn_cover_images/9780137399635/9780137399635_largeCoverImage.gif)
Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)
4th Edition
ISBN: 9780137399635
Author: Michael Sullivan, Michael Sullivan
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.4, Problem 41AYU
To determine
To find: The derivative of at 2.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Show that the Laplace equation in Cartesian coordinates:
J²u
J²u
+
= 0
მx2 Jy2
can be reduced to the following form in cylindrical polar coordinates:
湯(
ди
1 8²u
+
Or 7,2 მ)2
= 0.
Find integrating factor
Draw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.
Chapter 13 Solutions
Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)
Ch. 13.1 - Graph f( x )={ 3x2ifx2 3ifx=2 (pp.100-102)Ch. 13.1 - If f( x )={ xifx0 1ifx0 what is f( 0 ) ?...Ch. 13.1 - 3. The limit of a function f (x) as x approaches c...Ch. 13.1 - If a function f has no limit as x approaches c,...Ch. 13.1 - True or False may be described by saving that the...Ch. 13.1 - True or False lim xc f( x ) exists and equals some...Ch. 13.1 -
Ch. 13.1 - lim x3 ( 2 x 2 +1 )Ch. 13.1 -
Ch. 13.1 - lim x0 2x x 2 +4
Ch. 13.1 - lim x4 x 2 4x x4Ch. 13.1 -
Ch. 13.1 -
Ch. 13.1 - Prob. 14AYUCh. 13.1 - , x in radians
Ch. 13.1 - lim x0 tanx x , x in radiansCh. 13.1 -
Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - Problems 49 52 are based on material learned...Ch. 13.1 - Find the center, foci, and vertices of the ellipse...Ch. 13.1 - Problems 49 – 52 are based on material learned...Ch. 13.1 - Problems 49 – 52 are based on material learned...Ch. 13.2 - The limit of the product of two functions equals...Ch. 13.2 - limxcb= ______.Ch. 13.2 - 3.
(a) x (b) c (c) cx (d) x/c
Ch. 13.2 - True or False The limit of a polynomial function...Ch. 13.2 - True or False The limit of a rational function at...Ch. 13.2 - True or false The limit of a quotient equals the...Ch. 13.2 - In Problems 7- 42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7 – 42, find each limit...Ch. 13.2 - In Problems 7 42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7 – 42, find each limit...Ch. 13.2 - In Problem 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - Graph the function f(x)=x3+x2+1.Ch. 13.2 - Problem 57-60 are based on material learned...Ch. 13.2 - Problem 57-60 are based on material learned...Ch. 13.2 - Problem 57-60 are based on material learned...Ch. 13.3 - For the function f( x )={ x 2 ifx0 x+1if0x2...Ch. 13.3 - What are the domain and range of f( x )=lnx ?Ch. 13.3 - Prob. 3AYUCh. 13.3 - Prob. 4AYUCh. 13.3 - Prob. 5AYUCh. 13.3 - Prob. 6AYUCh. 13.3 - Prob. 7AYUCh. 13.3 - Prob. 8AYUCh. 13.3 - Prob. 9AYUCh. 13.3 - Prob. 10AYUCh. 13.3 - Prob. 11AYUCh. 13.3 - Prob. 12AYUCh. 13.3 - Prob. 13AYUCh. 13.3 - Prob. 14AYUCh. 13.3 - Prob. 15AYUCh. 13.3 - Prob. 16AYUCh. 13.3 - Prob. 17AYUCh. 13.3 - Prob. 18AYUCh. 13.3 - Prob. 19AYUCh. 13.3 - Prob. 20AYUCh. 13.3 - Prob. 21AYUCh. 13.3 - Prob. 22AYUCh. 13.3 - Prob. 23AYUCh. 13.3 - Prob. 24AYUCh. 13.3 - Prob. 25AYUCh. 13.3 - Prob. 26AYUCh. 13.3 - Prob. 27AYUCh. 13.3 - Prob. 28AYUCh. 13.3 - Prob. 29AYUCh. 13.3 - Prob. 30AYUCh. 13.3 - Prob. 31AYUCh. 13.3 - Prob. 32AYUCh. 13.3 - Prob. 33AYUCh. 13.3 - Prob. 34AYUCh. 13.3 - Prob. 35AYUCh. 13.3 - Prob. 36AYUCh. 13.3 - Prob. 37AYUCh. 13.3 - Prob. 38AYUCh. 13.3 - Prob. 39AYUCh. 13.3 - Prob. 40AYUCh. 13.3 - Prob. 41AYUCh. 13.3 - Prob. 42AYUCh. 13.3 - Prob. 43AYUCh. 13.3 - Prob. 44AYUCh. 13.3 - Prob. 45AYUCh. 13.3 - Prob. 46AYUCh. 13.3 - Prob. 47AYUCh. 13.3 - Prob. 48AYUCh. 13.3 - Prob. 49AYUCh. 13.3 - Prob. 50AYUCh. 13.3 - Prob. 51AYUCh. 13.3 - Prob. 52AYUCh. 13.3 - Prob. 53AYUCh. 13.3 - Prob. 54AYUCh. 13.3 - Prob. 55AYUCh. 13.3 - Prob. 56AYUCh. 13.3 - Prob. 57AYUCh. 13.3 - Prob. 58AYUCh. 13.3 - Prob. 59AYUCh. 13.3 - Prob. 60AYUCh. 13.3 - Prob. 61AYUCh. 13.3 - Prob. 62AYUCh. 13.3 - Prob. 63AYUCh. 13.3 - Prob. 64AYUCh. 13.3 - Prob. 65AYUCh. 13.3 - Prob. 66AYUCh. 13.3 - Prob. 67AYUCh. 13.3 - Prob. 68AYUCh. 13.3 - Prob. 69AYUCh. 13.3 - Prob. 70AYUCh. 13.3 - Prob. 71AYUCh. 13.3 - Prob. 72AYUCh. 13.3 - Prob. 73AYUCh. 13.3 - Prob. 74AYUCh. 13.3 - Prob. 75AYUCh. 13.3 - Prob. 76AYUCh. 13.3 - Prob. 77AYUCh. 13.3 - Prob. 78AYUCh. 13.3 - Prob. 79AYUCh. 13.3 - Prob. 80AYUCh. 13.3 - Prob. 81AYUCh. 13.3 - Prob. 82AYUCh. 13.3 - Prob. 83AYUCh. 13.3 - Prob. 84AYUCh. 13.3 - Prob. 85AYUCh. 13.3 - Prob. 86AYUCh. 13.3 - Prob. 87AYUCh. 13.3 - Prob. 88AYUCh. 13.3 - Prob. 89AYUCh. 13.3 - Prob. 90AYUCh. 13.3 - Prob. 91AYUCh. 13.3 - Prob. 92AYUCh. 13.3 - Prob. 93AYUCh. 13.3 - Prob. 94AYUCh. 13.4 - Prob. 1AYUCh. 13.4 - Prob. 2AYUCh. 13.4 - Prob. 3AYUCh. 13.4 - Prob. 4AYUCh. 13.4 - Prob. 5AYUCh. 13.4 - Prob. 6AYUCh. 13.4 - Prob. 7AYUCh. 13.4 - Prob. 8AYUCh. 13.4 - Prob. 9AYUCh. 13.4 - Prob. 10AYUCh. 13.4 - Prob. 11AYUCh. 13.4 - Prob. 12AYUCh. 13.4 - Prob. 13AYUCh. 13.4 - Prob. 14AYUCh. 13.4 - Prob. 15AYUCh. 13.4 - Prob. 16AYUCh. 13.4 - Prob. 17AYUCh. 13.4 - Prob. 18AYUCh. 13.4 - Prob. 19AYUCh. 13.4 - Prob. 20AYUCh. 13.4 - Prob. 21AYUCh. 13.4 - Prob. 22AYUCh. 13.4 - Prob. 23AYUCh. 13.4 - Prob. 24AYUCh. 13.4 - Prob. 25AYUCh. 13.4 - Prob. 26AYUCh. 13.4 - Prob. 27AYUCh. 13.4 - Prob. 28AYUCh. 13.4 - Prob. 29AYUCh. 13.4 - Prob. 30AYUCh. 13.4 - Prob. 31AYUCh. 13.4 - Prob. 32AYUCh. 13.4 - Prob. 33AYUCh. 13.4 - Prob. 34AYUCh. 13.4 - Prob. 35AYUCh. 13.4 - Prob. 36AYUCh. 13.4 - Prob. 37AYUCh. 13.4 - Prob. 38AYUCh. 13.4 - Prob. 39AYUCh. 13.4 - Prob. 40AYUCh. 13.4 - Prob. 41AYUCh. 13.4 - Prob. 42AYUCh. 13.4 - Prob. 43AYUCh. 13.4 - Prob. 44AYUCh. 13.4 - Prob. 45AYUCh. 13.4 - Instantaneous Rate of Change The volume V of a...Ch. 13.4 - instantaneous Velocity of a Ball In physics it is...Ch. 13.4 - Prob. 48AYUCh. 13.4 - Prob. 49AYUCh. 13.4 - Prob. 50AYUCh. 13.4 - Prob. 51AYUCh. 13.4 - Prob. 52AYUCh. 13.4 - Prob. 53AYUCh. 13.4 - Prob. 54AYUCh. 13.5 - The formula for the area A of a rectangle of...Ch. 13.5 - ______.(pp.828-831)
Ch. 13.5 - Prob. 3AYUCh. 13.5 - Prob. 4AYUCh. 13.5 - Prob. 5AYUCh. 13.5 - Prob. 6AYUCh. 13.5 - Prob. 7AYUCh. 13.5 - Prob. 8AYUCh. 13.5 - Prob. 9AYUCh. 13.5 - Prob. 10AYUCh. 13.5 - Prob. 11AYUCh. 13.5 - Prob. 12AYUCh. 13.5 - Prob. 13AYUCh. 13.5 - Prob. 14AYUCh. 13.5 - Prob. 15AYUCh. 13.5 - Prob. 16AYUCh. 13.5 - Prob. 17AYUCh. 13.5 - Prob. 18AYUCh. 13.5 - Prob. 19AYUCh. 13.5 - Prob. 20AYUCh. 13.5 - Prob. 21AYUCh. 13.5 - Prob. 22AYUCh. 13.5 - Prob. 23AYUCh. 13.5 - Prob. 24AYUCh. 13.5 - Prob. 25AYUCh. 13.5 - Prob. 26AYUCh. 13.5 - Prob. 27AYUCh. 13.5 - Prob. 28AYUCh. 13.5 - Prob. 29AYUCh. 13.5 - Prob. 30AYUCh. 13.5 - Prob. 31AYUCh. 13.5 - Prob. 32AYUCh. 13.5 - Prob. 33AYUCh. 13.5 - Prob. 34AYUCh. 13.5 - Prob. 35AYUCh. 13.5 - Prob. 36AYUCh. 13 - In Problems 111, find the limit. limx2(3x22x+1)Ch. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - In Problems 1– 11, find each limit...Ch. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Instantaneous Velocity of a Ball In physics it is...Ch. 13 - Prob. 39RECh. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - Prob. 42RECh. 13 - Prob. 43RECh. 13 - Prob. 44RECh. 13 - Prob. 1CTCh. 13 - Prob. 2CTCh. 13 - Prob. 3CTCh. 13 - Prob. 4CTCh. 13 - Prob. 5CTCh. 13 - Prob. 6CTCh. 13 - Prob. 7CTCh. 13 - Prob. 8CTCh. 13 - Prob. 9CTCh. 13 - Prob. 10CTCh. 13 - Prob. 11CTCh. 13 - Prob. 12CTCh. 13 - Prob. 13CTCh. 13 - Prob. 14CTCh. 13 - Prob. 15CTCh. 13 - Prob. 16CTCh. 13 - Prob. 17CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Draw the asymptotes (if there are any). Then plot two points on each piece of the graph.arrow_forwardCancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forward
- Suppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forwardi need help please dont use chat gptarrow_forward3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward
- 1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forwardA driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forward
- Topic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward1. Given the vector field F(x, y, z) = -xi, verify the relation 1 V.F(0,0,0) = lim 0+ volume inside Se ff F• Nds SE where SE is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward4 3 2 -5 4-3 -2 -1 1 2 3 4 5 12 23 -4 The function graphed above is: Increasing on the interval(s) Decreasing on the interval(s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
03a: Numerical Differentiation Review; Author: Jaisohn Kim;https://www.youtube.com/watch?v=IMYsqbV4CEg;License: Standard YouTube License, CC-BY