
Calculus (MindTap Course List)
8th Edition
ISBN: 9781285740621
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 9E
To determine
To find:
The length of the curve correct to four decimal places
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please show your answer to 4 decimal places.
Find the direction in which the maximum rate of change occurs for the function f(x, y) = 3x sin(xy) at
the point (5,4). Give your answer as a unit vector.
let θ = 17π over 12
Part A: Determine tan θ using the sum formula. Show all necessary work in the calculation.Part B: Determine cos θ using the difference formula. Show all necessary work in the calculation.
Calculus lll
May I please have an explanation about how to calculate the derivative of the surface (the dS) on the surface integral, and then explain the essentials of the surface integral?
Chapter 13 Solutions
Calculus (MindTap Course List)
Ch. 13.1 - Prob. 1ECh. 13.1 - Prob. 2ECh. 13.1 - Prob. 3ECh. 13.1 - Find the limit. limt1(t2tt1i+t+8j+sintlntk)Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Sketch the curve with the given vector equation....Ch. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Use a computer to graph the curve with the given...Ch. 13.1 - Use a computer to graph the curve with the given...Ch. 13.1 - Graph the curve with parametric equations...Ch. 13.1 - Graph the curve with parametric equations...Ch. 13.1 - Prob. 40ECh. 13.1 - Show that the curve with parametric equations...Ch. 13.1 - Prob. 42ECh. 13.1 - Prob. 43ECh. 13.1 - Prob. 44ECh. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - Try to sketch by hand the curve of intersection of...Ch. 13.1 - Try to sketch by hand the curve of intersection of...Ch. 13.1 - If two objects travel through space along two...Ch. 13.1 - Prob. 50ECh. 13.1 - a Graph the curve with parametric equations...Ch. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - Prob. 54ECh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Prob. 29ECh. 13.2 - Find parametric equations for the tangent line to...Ch. 13.2 - Prob. 31ECh. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Evaluate the integral. 02(tit3j+3t5k)dtCh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 38ECh. 13.2 - Evaluate the integral. (sec2ti+t(t2+1)3j+t2lntk)dtCh. 13.2 - Prob. 40ECh. 13.2 - Prob. 41ECh. 13.2 - Prob. 42ECh. 13.2 - Prob. 43ECh. 13.2 - Prove Formula 3 of Theorem 3.Ch. 13.2 - Prove Formula 5 of Theorem 3.Ch. 13.2 - Prob. 46ECh. 13.2 - Prob. 47ECh. 13.2 - If u and v are the vector functions in Exercise...Ch. 13.2 - Prob. 49ECh. 13.2 - Prob. 50ECh. 13.2 - If r(t)=acost+bsint, where a and b are constant...Ch. 13.2 - Prob. 52ECh. 13.2 - Prob. 53ECh. 13.2 - Find an expression for ddt[u(t)(v(t)w(t))].Ch. 13.2 - Prob. 55ECh. 13.2 - Prob. 56ECh. 13.2 - Prob. 57ECh. 13.2 - Prob. 58ECh. 13.3 - Find the length of the curve....Ch. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Find the length of the curve. r(t)=i+t2j+t3k,0t1Ch. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Find the length of the curve correct of four...Ch. 13.3 - Prob. 9ECh. 13.3 - Graph the curve with parametric equations...Ch. 13.3 - Let C be the curve of intersection of the...Ch. 13.3 - Find, correct to four decimal places, the length...Ch. 13.3 - a Find the arc length function for the curve...Ch. 13.3 - a Find the arc length function for the curve...Ch. 13.3 - Prob. 15ECh. 13.3 - Reparametrize the curve r(t)=(2t2+11)i+2tt2+1j...Ch. 13.3 - a Find the unit tangent and unit normal vectors...Ch. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Use Theorem 10 to find the curvature. r(t)=t3j+t2kCh. 13.3 - Use Theorem 10 to find the curvature....Ch. 13.3 - Prob. 23ECh. 13.3 - Find the curvature of r(t)=t2,lnt,tlnt at the...Ch. 13.3 - Find the curvature of r(t)=t,t2,t3 at the point...Ch. 13.3 - Graph the curve with parametric equations...Ch. 13.3 - Use Formula 11 to find the curvature. y=x4Ch. 13.3 - Prob. 28ECh. 13.3 - Use Formula 11 to find the curvature. y=xexCh. 13.3 - Prob. 30ECh. 13.3 - Prob. 31ECh. 13.3 - Find an equation of a parabola that has curvature...Ch. 13.3 - a Is the curvature of the curve C shown in the...Ch. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Two graphs, a and b, are shown. One is a curve...Ch. 13.3 - Two graphs, a and b, are shown. One is a curve...Ch. 13.3 - Prob. 40ECh. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - Prob. 46ECh. 13.3 - Prob. 47ECh. 13.3 - Prob. 48ECh. 13.3 - Find equations of the normal plane and osculating...Ch. 13.3 - Find equations of the normal plane and osculating...Ch. 13.3 - Find equations of the osculating circles of the...Ch. 13.3 - Find equations of the osculating circles of the...Ch. 13.3 - Prob. 53ECh. 13.3 - Is there a point on the curve in Exercise 53 where...Ch. 13.3 - Find equations of the normal and osculating planes...Ch. 13.3 - Prob. 56ECh. 13.3 - Show that at every point on the curve...Ch. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Prob. 60ECh. 13.3 - a Show that dB/ds is perpendicular to B. b Show...Ch. 13.3 - Prob. 62ECh. 13.3 - Use the Frenet-Serret formulas to prove each of...Ch. 13.3 - Show that the circular helix r(t)=acost,asint,bt,...Ch. 13.3 - Prob. 65ECh. 13.3 - Prob. 66ECh. 13.3 - Prob. 67ECh. 13.3 - Prob. 68ECh. 13.4 - The table gives coordinates of a particle moving...Ch. 13.4 - The figure shows the path of a particle that moves...Ch. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - a Find the position vector of a particle that has...Ch. 13.4 - Prob. 18ECh. 13.4 - The position function of a particle is given by...Ch. 13.4 - Prob. 20ECh. 13.4 - A force with magnitude 20 N acts directly upward...Ch. 13.4 - Show that if a particle moves with constant speed,...Ch. 13.4 - A projectile is fired with an initial speed of 200...Ch. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - A projectile is fired from a tank with initial...Ch. 13.4 - A rifle is fired with angle of elevation 36. What...Ch. 13.4 - A batter hits a baseball 3 ft above the ground...Ch. 13.4 - A medieval city has the shape of a square and is...Ch. 13.4 - Show that a projectile reaches three-quarters of...Ch. 13.4 - A ball is thrown eastward into the air from the...Ch. 13.4 - Prob. 32ECh. 13.4 - Water traveling along a straight portion of a...Ch. 13.4 - Prob. 34ECh. 13.4 - Prob. 35ECh. 13.4 - Prob. 36ECh. 13.4 - Prob. 37ECh. 13.4 - Prob. 38ECh. 13.4 - Prob. 39ECh. 13.4 - Prob. 40ECh. 13.4 - Find the tangential and normal components of the...Ch. 13.4 - Prob. 42ECh. 13.4 - The magnitude of the acceleration vector a is 10...Ch. 13.4 - Prob. 44ECh. 13.4 - The position function of a spaceship is...Ch. 13.4 - Prob. 46ECh. 13.R - Prob. 1CCCh. 13.R - Prob. 2CCCh. 13.R - Prob. 3CCCh. 13.R - Prob. 4CCCh. 13.R - Prob. 5CCCh. 13.R - Prob. 6CCCh. 13.R - Prob. 7CCCh. 13.R - Prob. 8CCCh. 13.R - Prob. 9CCCh. 13.R - Prob. 1TFQCh. 13.R - Prob. 2TFQCh. 13.R - Prob. 3TFQCh. 13.R - Prob. 4TFQCh. 13.R - Prob. 5TFQCh. 13.R - Prob. 6TFQCh. 13.R - Determine whether the statement is true or false....Ch. 13.R - Prob. 8TFQCh. 13.R - Prob. 9TFQCh. 13.R - Prob. 10TFQCh. 13.R - Prob. 11TFQCh. 13.R - Prob. 12TFQCh. 13.R - Prob. 13TFQCh. 13.R - Prob. 14TFQCh. 13.R - Prob. 1ECh. 13.R - Prob. 2ECh. 13.R - Prob. 3ECh. 13.R - Prob. 4ECh. 13.R - Prob. 5ECh. 13.R - Prob. 6ECh. 13.R - Prob. 7ECh. 13.R - Prob. 8ECh. 13.R - Prob. 9ECh. 13.R - Prob. 10ECh. 13.R - For the curve given by r(t)=sin3t,cos3t,sin2t,...Ch. 13.R - Find the curvature of the ellipse x=3cost,y=4sint...Ch. 13.R - Find the curvature of the curve y=x4 at the point...Ch. 13.R - Find an equation of the osculating circle of the...Ch. 13.R - Prob. 15ECh. 13.R - The figure shows the curve C traced by a particle...Ch. 13.R - A particle moves with position function...Ch. 13.R - Prob. 18ECh. 13.R - A particle starts at the origin with initial...Ch. 13.R - Prob. 20ECh. 13.R - A projectile is launched with an initial speed of...Ch. 13.R - Prob. 22ECh. 13.R - Prob. 23ECh. 13.R - In designing transfer curves to connect sections...Ch. 13.P - A particle P moves with constant angular speed ...Ch. 13.P - A circular curve of radius R on a highway is...Ch. 13.P - A projectile is fired from the origin with angle...Ch. 13.P - a A projectile is fired from the origin down an...Ch. 13.P - A ball rolls off a table with a speed of 2 ft/s....Ch. 13.P - Prob. 6PCh. 13.P - If a projectile is fired with angle of elevation ...Ch. 13.P - Prob. 8PCh. 13.P - Prob. 9P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- У1 = e is a solution to the differential equation xy" — (x+1)y' + y = 0. Use reduction of order to find the solution y(x) corresponding to the initial data y(1) = 1, y′ (1) = 0. Then sin(y(2.89)) is -0.381 0.270 -0.401 0.456 0.952 0.981 -0.152 0.942arrow_forwardsolve pleasearrow_forwardThe parametric equations of the function are given asx=asin²0, y = acos). Calculate [Let: a=anumerical coefficient] dy d²y and dx dx2arrow_forward
- A tank contains 200 gal of fresh water. A solution containing 4 lb/gal of soluble lawn fertilizer runs into the tank at the rate of 1 gal/min, and the mixture is pumped out of the tank at the rate of 5 gal/min. Find the maximum amount of fertilizer in the tank and the time required to reach the maximum. Find the time required to reach the maximum amount of fertilizer in the tank. t= min (Type an integer or decimal rounded to the nearest tenth as needed.)arrow_forwardThumbi Irrigation Scheme in Mzimba district is under threat of flooding. In order to mitigate against the problem, authorities have decided to construct a flood protection bund (Dyke). Figure 1 is a cross section of a 300m long proposed dyke; together with its foundation (key). Survey data for the proposed site of the dyke are presented in Table 1. Table 2 provides swelling and shrinkage factors for the fill material that has been proposed. The dyke dimensions that are given are for a compacted fill. (1) Assume you are in the design office, use both the Simpson Rule and Trapezoidal Rule to compute the total volume of earthworks required. (Assume both the dyke and the key will use the same material). (2) If you are a Contractor, how many days will it take to finish hauling the computed earthworks using 3 tippers of 12m³ each? Make appropriate assumptions. DIKE CROSS SECTION OGL KEY (FOUNDATION) 2m 1m 2m 8m Figure 1: Cross section of Dyke and its foundation 1.5m from highest OGL 0.5m…arrow_forwardThe parametric equations of the function are given as x = 3cos 0 - sin³0 and y = 3sin 0 - cos³0. dy d2y Calculate and dx dx².arrow_forward
- (10 points) Let f(x, y, z) = ze²²+y². Let E = {(x, y, z) | x² + y² ≤ 4,2 ≤ z ≤ 3}. Calculate the integral f(x, y, z) dv. Earrow_forward(12 points) Let E={(x, y, z)|x²+ y² + z² ≤ 4, x, y, z > 0}. (a) (4 points) Describe the region E using spherical coordinates, that is, find p, 0, and such that (x, y, z) (psin cos 0, psin sin 0, p cos) € E. (b) (8 points) Calculate the integral E xyz dV using spherical coordinates.arrow_forward(10 points) Let f(x, y, z) = ze²²+y². Let E = {(x, y, z) | x² + y² ≤ 4,2 ≤ z < 3}. Calculate the integral y, f(x, y, z) dV.arrow_forward
- (14 points) Let f: R3 R and T: R3. →R³ be defined by f(x, y, z) = ln(x²+ y²+2²), T(p, 0,4)=(psin cos 0, psin sin, pcos). (a) (4 points) Write out the composition g(p, 0, 4) = (foT)(p,, ) explicitly. Then calculate the gradient Vg directly, i.e. without using the chain rule. (b) (4 points) Calculate the gradient Vf(x, y, z) where (x, y, z) = T(p, 0,4). (c) (6 points) Calculate the derivative matrix DT(p, 0, p). Then use the Chain Rule to calculate Vg(r,0,4).arrow_forward(10 points) Let S be the upper hemisphere of the unit sphere x² + y²+2² = 1. Let F(x, y, z) = (x, y, z). Calculate the surface integral J F F-dS. Sarrow_forward(8 points) Calculate the following line integrals. (a) (4 points) F Fds where F(x, y, z) = (x, y, xy) and c(t) = (cost, sint, t), tЄ [0,π] . (b) (4 points) F. Fds where F(x, y, z) = (√xy, e³, xz) where c(t) = (t², t², t), t = [0, 1] .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY