![Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021510/9780078021510_largeCoverImage.gif)
Chemistry
12th Edition
ISBN: 9780078021510
Author: Raymond Chang Dr., Kenneth Goldsby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.3, Problem 4PE
The reaction 2A → B is first order in A with a rate constant of 2.8 × 10−2 s−1 at 80°C. How long (in seconds) will it take for A to decrease from 0.88 M to 0.14 M?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4?
If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.
Don't used hand raiting and don't used Ai solution
What should be use to complete the
reaction?
CN
CN
Chapter 13 Solutions
Chemistry
Ch. 13.1 - Write the rate expressions for the following...Ch. 13.1 - Consider the reaction 4PH3(g)P4(g)+6H2(g) Suppose...Ch. 13.1 - Write a balanced equation for a gas-phase reaction...Ch. 13.2 - The reaction of peroxydisulfate ion (S2O82) with...Ch. 13.2 - The relative rates of the reaction 2A + B ...Ch. 13.3 - The reaction 2A B is first order in A with a rate...Ch. 13.3 - Ethyl iodide (C2H5I) decomposes at a certain...Ch. 13.3 - Calculate the half-life of the decomposition of...Ch. 13.3 - Consider the first-order reaction A B in which A...Ch. 13.3 - The reaction 2A B is second order with a rate...
Ch. 13.3 - Consider the reaction A products. The half-life...Ch. 13.4 - The second-order rate constant for the...Ch. 13.4 - The first-order rate constant for the reaction of...Ch. 13.4 - Prob. 1RCCh. 13.5 - The reaction between NO2 and CO to produce NO and...Ch. 13.5 - The rate law for the reaction H2 + 2IBr I2 + 2HBr...Ch. 13.6 - Which of the following is false regarding...Ch. 13 - What is meant by the rate of a chemical reaction?...Ch. 13 - Distinguish between average rate and instantaneous...Ch. 13 - Prob. 13.3QPCh. 13 - Can you suggest two reactions that are very slow...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Consider the reaction 2NO(g)+O2(g)2NO2(g) Suppose...Ch. 13 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 13 - Explain what is meant by the rate law of a...Ch. 13 - What are the units for the rate constants of...Ch. 13 - Consider the zero-order reaction: A product. (a)...Ch. 13 - On which of the following properties does the rate...Ch. 13 - The rate law for the reaction...Ch. 13 - Use the data in Table 13.2 to calculate the rate...Ch. 13 - Consider the reaction A+Bproducts From the...Ch. 13 - Consider the reaction X+YZ From the following...Ch. 13 - Determine the overall orders of the reactions to...Ch. 13 - Consider the reaction AB The rate of the reaction...Ch. 13 - Cyclobutane decomposes to ethylene according to...Ch. 13 - The following gas-phase reaction was studied at...Ch. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - Prob. 13.23QPCh. 13 - Prob. 13.24QPCh. 13 - What is the half-life of a compound if 75 percent...Ch. 13 - The thermal decomposition of phosphine (PH3) into...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - Consider the first-order reaction A B shown here....Ch. 13 - The reaction X Y shown here follows first-order...Ch. 13 - Define activation energy. What role does...Ch. 13 - Prob. 13.32QPCh. 13 - Prob. 13.33QPCh. 13 - Prob. 13.34QPCh. 13 - Sketch a potential energy versus reaction progress...Ch. 13 - Prob. 13.36QPCh. 13 - The diagram in (a) shows the plots of ln k versus...Ch. 13 - Given the same reactant concentrations, the...Ch. 13 - Some reactions are described as parallel in that...Ch. 13 - Variation of the rate constant with temperature...Ch. 13 - For the reaction NO(g)+O3(g)NO2(g)+O2(g) the...Ch. 13 - The rate constant of a first-order reaction is...Ch. 13 - The rate constants of some reactions double with...Ch. 13 - Prob. 13.44QPCh. 13 - Consider the second-order reaction...Ch. 13 - The rate at which tree crickets chirp is 2.0 102...Ch. 13 - Prob. 13.47QPCh. 13 - What do we mean by the mechanism of a reaction?...Ch. 13 - Classify each of the following elementary steps as...Ch. 13 - Reactions can be classified as unimolecular,...Ch. 13 - Determine the molecularity and write the rate law...Ch. 13 - What is the rate-determining step of a reaction?...Ch. 13 - The equation for the combustion of ethane (C2H6)...Ch. 13 - Specify which of the following species cannot be...Ch. 13 - The rate law for the reaction...Ch. 13 - For the reaction X2 + Y + Z XY + XZ it is found...Ch. 13 - Prob. 13.57QPCh. 13 - The rate law for the reaction...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - What are the characteristics of a catalyst?Ch. 13 - A certain reaction is known to proceed slowly at...Ch. 13 - Distinguish between homogeneous catalysis and...Ch. 13 - Prob. 13.63QPCh. 13 - The concentrations of enzymes in cells are usually...Ch. 13 - The diagram shown here represents a two-step...Ch. 13 - Consider the following mechanism for the...Ch. 13 - The following diagrams represent the progress of...Ch. 13 - Prob. 13.68QPCh. 13 - Prob. 13.69QPCh. 13 - List four factors that influence the rate of a...Ch. 13 - Prob. 13.71QPCh. 13 - Prob. 13.72QPCh. 13 - Prob. 13.73QPCh. 13 - The following data were collected for the reaction...Ch. 13 - Prob. 13.75QPCh. 13 - The rate of the reaction...Ch. 13 - Which of the following equations best describes...Ch. 13 - Prob. 13.78QPCh. 13 - The bromination of acetone is acid-catalyzed:...Ch. 13 - The decomposition of N2O to N2 and O2 is a...Ch. 13 - The reaction S2O82+2I2SO42+I2 proceeds slowly in...Ch. 13 - Prob. 13.82QPCh. 13 - The integrated rate law for the zero-order...Ch. 13 - Prob. 13.84QPCh. 13 - Prob. 13.85QPCh. 13 - The diagrams here represent the reaction A + B C...Ch. 13 - Prob. 13.87QPCh. 13 - The rate law for the reaction 2NO2 (g) N2O4(g) is...Ch. 13 - Prob. 13.89QPCh. 13 - Prob. 13.90QPCh. 13 - Briefly comment on the effect of a catalyst on...Ch. 13 - When 6 g of granulated Zn is added to a solution...Ch. 13 - Prob. 13.93QPCh. 13 - A certain first-order reaction is 35.5 percent...Ch. 13 - The decomposition of dinitrogen pentoxide has been...Ch. 13 - The thermal decomposition of N2O5 obeys...Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.99QPCh. 13 - Prob. 13.100QPCh. 13 - Prob. 13.101QPCh. 13 - Chlorine oxide (ClO), which plays an important...Ch. 13 - Prob. 13.103QPCh. 13 - Prob. 13.104QPCh. 13 - Prob. 13.105QPCh. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - Prob. 13.108QPCh. 13 - Prob. 13.109QPCh. 13 - Thallium(I) is oxidized by cerium(IV) as follows:...Ch. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - Prob. 13.113QPCh. 13 - Prob. 13.114QPCh. 13 - Strontium-90, a radioactive isotope, is a major...Ch. 13 - Prob. 13.117QPCh. 13 - Consider the following potential energy profile...Ch. 13 - Prob. 13.119QPCh. 13 - Prob. 13.120QPCh. 13 - Prob. 13.121QPCh. 13 - Prob. 13.122QPCh. 13 - Prob. 13.123QPCh. 13 - Prob. 13.124QPCh. 13 - Polyethylene is used in many items, including...Ch. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - Prob. 13.131QPCh. 13 - A gas mixture containing CH3 fragments, C2H6...Ch. 13 - Prob. 13.133QPCh. 13 - The activation energy (Ea) for the reaction...Ch. 13 - The rate constants for the first-order...Ch. 13 - Prob. 13.136QPCh. 13 - An instructor performed a lecture demonstration of...Ch. 13 - Prob. 13.138IMECh. 13 - Is the rate constant (k) of a reaction more...Ch. 13 - Prob. 13.140IMECh. 13 - Prob. 13.141IMECh. 13 - Prob. 13.142IME
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Don't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forward
- You are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forwardPredict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forward
- A researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forwardCreate a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forward
- In addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forwardBriefly describe a eutectic system.arrow_forward13.53 Draw all stereoisomers formed when each compound is treated with HBr in the presence of peroxides. a. b. C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY