Chemistry
Chemistry
12th Edition
ISBN: 9780078021510
Author: Raymond Chang Dr., Kenneth Goldsby Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.132QP

A gas mixture containing CH3 fragments, C2H6 molecules, and an inert gas (He) was prepared at 600 K with a total pressure of 5.42 atm. The elementary reaction

CH 3 + C 2 H 6 CH 4 + C 2 H 5

has a second-order rate constant of 3.0 × 104/M · s. Given that the mole fractions of CH3 and C2H6 are 0.00093 and 0.00077, respectively, calculate the initial rate of the reaction at this temperature.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The initial rate of the given reaction at the given temperature has to be calculated.

Concept introduction:

Rate of the reaction is the change in the concentration of reactant or a product with time. It can be varied in accordance with temperature, pressure, concentration, presence of catalyst, surface area

Rate equation for the general reaction A+BProduct is,

Rate=krateconstat[A][B]

Rate constants are independent of concentration but depend on other factors, most notably temperature.

The reaction with the faster rate will have the larger rate constant.

Order of a reaction:  The sum of exponents of the concentrations in the rate law for the reaction is said to be order of a reaction.

The partial pressure of a gas in a mixture can be expressed as,

PA=XAPTotalPAPartialpressureofgasAXAMolefractionofgasAPTotalTotalpressureofmixture

The ideal gas Law equation is,

PV=nRTPPressureVVolumenNumberofmolesRIdealgasconstantTTemperature

Answer to Problem 13.132QP

Initial rate of the given reaction is 2.6×10-4M/s

Explanation of Solution

Given,

Gas mixture containing CH3 fragments, C2H6 molecules, and an inert gas (He) was prepared at 600K with a total pressure of 5.42atm.

The elementary reaction is,

CH3+C2H6CH4+C2H5

This reaction follows second order kinetics, with a rate constant of 3.0×104/M.s .

Given mole fractions of CH3 and C2H6 are 0.00093and0.00077 respectively,

The initial rate of the reaction at 600K temperature can be determined as follows,

Rate law for the given reaction is,

Rate=k[CH3][C2H6]

Rate constant value for the given reaction is 3.0×104/M.s. If the concentration of reactants were known it is easy to find out the initial rate of the reaction.

Using mole fraction value and total partial pressure, partial pressure of each reactant in the reaction can be calculated as follows,

PCH3=XCH3PT=(0.00093)(5.42atm)=0.0050atmPC2H6=XC2H6PT=(0.00077)(5.42atm)=0.0042atm

Molar concentration of reactants can be determined with the help of ideal gas equation,

nV=PRTnVmolarconcentration

MCH3=PCH3RT=0.00050atm0.0821L.atm/mol.K×600K=1.0×104MMC2H6=PC2H6RT=0.00042atm0.0821L.atm/mol.K×600K=8.5×105M

Substitute the concentration and the rate constant into the rate law to find the initial rate of the reaction,

Rate=k[CH3][C2H6]Rate=(3.0×104M-1s-1)×(1.0×10-4M)×(8.5×10-5M)Rate=2.6×10-4M/s

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.
When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.   Which experimental number must be initialled by the Lab TA for the first run of Part 1 of the experiment? a) the heat capacity of the calorimeter b) Mass of sample c) Ti d) The molarity of the HCl e) Tf
Predict products for the Following organic rxn/s by writing the structurels of the correct products. Write above the line provided" your answer D2 ①CH3(CH2) 5 CH3 + D₂ (adequate)" + 2 mited) 19 Spark Spark por every item. 4 CH 3 11 3 CH 3 (CH2) 4 C-H + CH3OH CH2 CH3 + CH3 CH2OH 0 CH3 fou + KMnDy→ C43 + 2 KMn Dy→→ C-OH ") 0 C-OH 1110 (4.) 9+3 =C CH3 + HNO 3 0 + Heat> + CH3 C-OH + Heat CH2CH3 - 3 2 + D Heat H 3 CH 3 CH₂ CH₂ C = CH + 2 H₂ → 2 2

Chapter 13 Solutions

Chemistry

Ch. 13.3 - Consider the reaction A products. The half-life...Ch. 13.4 - The second-order rate constant for the...Ch. 13.4 - The first-order rate constant for the reaction of...Ch. 13.4 - Prob. 1RCCh. 13.5 - The reaction between NO2 and CO to produce NO and...Ch. 13.5 - The rate law for the reaction H2 + 2IBr I2 + 2HBr...Ch. 13.6 - Which of the following is false regarding...Ch. 13 - What is meant by the rate of a chemical reaction?...Ch. 13 - Distinguish between average rate and instantaneous...Ch. 13 - Prob. 13.3QPCh. 13 - Can you suggest two reactions that are very slow...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Write the reaction rate expressions for the...Ch. 13 - Consider the reaction 2NO(g)+O2(g)2NO2(g) Suppose...Ch. 13 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 13 - Explain what is meant by the rate law of a...Ch. 13 - What are the units for the rate constants of...Ch. 13 - Consider the zero-order reaction: A product. (a)...Ch. 13 - On which of the following properties does the rate...Ch. 13 - The rate law for the reaction...Ch. 13 - Use the data in Table 13.2 to calculate the rate...Ch. 13 - Consider the reaction A+Bproducts From the...Ch. 13 - Consider the reaction X+YZ From the following...Ch. 13 - Determine the overall orders of the reactions to...Ch. 13 - Consider the reaction AB The rate of the reaction...Ch. 13 - Cyclobutane decomposes to ethylene according to...Ch. 13 - The following gas-phase reaction was studied at...Ch. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - Prob. 13.23QPCh. 13 - Prob. 13.24QPCh. 13 - What is the half-life of a compound if 75 percent...Ch. 13 - The thermal decomposition of phosphine (PH3) into...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - The rate constant for the second-order reaction...Ch. 13 - Consider the first-order reaction A B shown here....Ch. 13 - The reaction X Y shown here follows first-order...Ch. 13 - Define activation energy. What role does...Ch. 13 - Prob. 13.32QPCh. 13 - Prob. 13.33QPCh. 13 - Prob. 13.34QPCh. 13 - Sketch a potential energy versus reaction progress...Ch. 13 - Prob. 13.36QPCh. 13 - The diagram in (a) shows the plots of ln k versus...Ch. 13 - Given the same reactant concentrations, the...Ch. 13 - Some reactions are described as parallel in that...Ch. 13 - Variation of the rate constant with temperature...Ch. 13 - For the reaction NO(g)+O3(g)NO2(g)+O2(g) the...Ch. 13 - The rate constant of a first-order reaction is...Ch. 13 - The rate constants of some reactions double with...Ch. 13 - Prob. 13.44QPCh. 13 - Consider the second-order reaction...Ch. 13 - The rate at which tree crickets chirp is 2.0 102...Ch. 13 - Prob. 13.47QPCh. 13 - What do we mean by the mechanism of a reaction?...Ch. 13 - Classify each of the following elementary steps as...Ch. 13 - Reactions can be classified as unimolecular,...Ch. 13 - Determine the molecularity and write the rate law...Ch. 13 - What is the rate-determining step of a reaction?...Ch. 13 - The equation for the combustion of ethane (C2H6)...Ch. 13 - Specify which of the following species cannot be...Ch. 13 - The rate law for the reaction...Ch. 13 - For the reaction X2 + Y + Z XY + XZ it is found...Ch. 13 - Prob. 13.57QPCh. 13 - The rate law for the reaction...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - What are the characteristics of a catalyst?Ch. 13 - A certain reaction is known to proceed slowly at...Ch. 13 - Distinguish between homogeneous catalysis and...Ch. 13 - Prob. 13.63QPCh. 13 - The concentrations of enzymes in cells are usually...Ch. 13 - The diagram shown here represents a two-step...Ch. 13 - Consider the following mechanism for the...Ch. 13 - The following diagrams represent the progress of...Ch. 13 - Prob. 13.68QPCh. 13 - Prob. 13.69QPCh. 13 - List four factors that influence the rate of a...Ch. 13 - Prob. 13.71QPCh. 13 - Prob. 13.72QPCh. 13 - Prob. 13.73QPCh. 13 - The following data were collected for the reaction...Ch. 13 - Prob. 13.75QPCh. 13 - The rate of the reaction...Ch. 13 - Which of the following equations best describes...Ch. 13 - Prob. 13.78QPCh. 13 - The bromination of acetone is acid-catalyzed:...Ch. 13 - The decomposition of N2O to N2 and O2 is a...Ch. 13 - The reaction S2O82+2I2SO42+I2 proceeds slowly in...Ch. 13 - Prob. 13.82QPCh. 13 - The integrated rate law for the zero-order...Ch. 13 - Prob. 13.84QPCh. 13 - Prob. 13.85QPCh. 13 - The diagrams here represent the reaction A + B C...Ch. 13 - Prob. 13.87QPCh. 13 - The rate law for the reaction 2NO2 (g) N2O4(g) is...Ch. 13 - Prob. 13.89QPCh. 13 - Prob. 13.90QPCh. 13 - Briefly comment on the effect of a catalyst on...Ch. 13 - When 6 g of granulated Zn is added to a solution...Ch. 13 - Prob. 13.93QPCh. 13 - A certain first-order reaction is 35.5 percent...Ch. 13 - The decomposition of dinitrogen pentoxide has been...Ch. 13 - The thermal decomposition of N2O5 obeys...Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.99QPCh. 13 - Prob. 13.100QPCh. 13 - Prob. 13.101QPCh. 13 - Chlorine oxide (ClO), which plays an important...Ch. 13 - Prob. 13.103QPCh. 13 - Prob. 13.104QPCh. 13 - Prob. 13.105QPCh. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - Prob. 13.108QPCh. 13 - Prob. 13.109QPCh. 13 - Thallium(I) is oxidized by cerium(IV) as follows:...Ch. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - Prob. 13.113QPCh. 13 - Prob. 13.114QPCh. 13 - Strontium-90, a radioactive isotope, is a major...Ch. 13 - Prob. 13.117QPCh. 13 - Consider the following potential energy profile...Ch. 13 - Prob. 13.119QPCh. 13 - Prob. 13.120QPCh. 13 - Prob. 13.121QPCh. 13 - Prob. 13.122QPCh. 13 - Prob. 13.123QPCh. 13 - Prob. 13.124QPCh. 13 - Polyethylene is used in many items, including...Ch. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - Prob. 13.131QPCh. 13 - A gas mixture containing CH3 fragments, C2H6...Ch. 13 - Prob. 13.133QPCh. 13 - The activation energy (Ea) for the reaction...Ch. 13 - The rate constants for the first-order...Ch. 13 - Prob. 13.136QPCh. 13 - An instructor performed a lecture demonstration of...Ch. 13 - Prob. 13.138IMECh. 13 - Is the rate constant (k) of a reaction more...Ch. 13 - Prob. 13.140IMECh. 13 - Prob. 13.141IMECh. 13 - Prob. 13.142IME
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY