EBK ELECTRIC CIRCUITS
EBK ELECTRIC CIRCUITS
10th Edition
ISBN: 9780100801790
Author: Riedel
Publisher: YUZU
Question
Book Icon
Chapter 13.3, Problem 3AP

(a)

To determine

Find the value of I(s), V1(s) and V2(s) as a rational function of s.

(b)

To determine

Find the time domain expressions for i(t), v1(t) and v2(t).

Blurred answer
Students have asked these similar questions
I need help checking if its correct -E1 + VR1 + VR4 – E2 + VR3 = 0 -------> Loop 1 (a) R1(I1) + R4(I1 – I2) + R3(I1) = E1 + E2 ------> Loop 1 (b) R1(I1) + R4(I1) - R4(I2) + R3(I1) = E1 + E2 ------> Loop 1 (c) (R1 + R3 + R4) (I1)  - R4(I2)    = E1 + E2 ------> Loop 1 (d) Now that we have loop 1 equation will procced on finding the equation of I2 current loop. However, a reminder that because we are going in a clockwise direction, it goes against the direction of the current. As such we will get an equation for the matrix that will be:   E2 – VR4 – VR2 + E3 = 0 ------> Loop 2 (a) -R4(I2 – I1) -R2(I2) = -E2 – E3  ------> Loop 2 (b) -R4(I2) + R4(I1) - R2(I2) = -E2 – E3  -----> Loop 2 (c)                                     R4(I1) – (R4 + R2)(I2) = -E2 – E3  -----> Loop 2 (d) These two equations will be implemented to the matrix formula I = inv(A) * b       R11                        R12   (R1 + R3 + R4)     -R4     -R4     R4 + R2
10.2 For each of the following groups of sources, determineif the three sources constitute a balanced source, and if it is,determine if it has a positive or negative phase sequence.(a) va(t) = 169.7cos(377t +15◦) Vvb(t) = 169.7cos(377t −105◦) Vvc(t) = 169.7sin(377t −135◦) V(b) va(t) = 311cos(wt −12◦) Vvb(t) = 311cos(wt +108◦) Vvc(t) = 311cos(wt +228◦) V(c) V1 = 140 −140◦ VV2 = 114 −20◦ VV3 = 124 100◦ V
Apply single-phase equivalency to determine the linecurrents in the Y-D network shown in Fig. P10.13. The loadimpedances are Zab = Zbc = Zca = (25+ j5) W

Chapter 13 Solutions

EBK ELECTRIC CIRCUITS

Ch. 13.5 - The unit impulse response of a circuit is υo(t) =...Ch. 13.7 - The current source in the circuit shown is...Ch. 13.7 - For the circuit shown, find the steady-state...Ch. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - An 8 kΩ resistor, a 25 mH inductor, and a 62.5 pF...Ch. 13 - Prob. 6PCh. 13 - Find the poles and zeros of the impedance seen...Ch. 13 - Find the poles and zeros of the impedance seen...Ch. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 13PCh. 13 - Prob. 15PCh. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - Prob. 25PCh. 13 - Prob. 28PCh. 13 - The switch in the circuit seen in Fig. P13.32 has...Ch. 13 - Prob. 31PCh. 13 - Prob. 33PCh. 13 - Prob. 35PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Find the transfer function H(s) − Vo/Vi for the...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - The operational amplifier in the circuit in Fig....Ch. 13 - Find the transfer function Io/Ig as a function of...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Assume the voltage impulse response of a circuit...Ch. 13 - Prob. 68PCh. 13 - The input voltage in the circuit seen in Fig....Ch. 13 - Find the impulse response of the circuit shown in...Ch. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - Prob. 75PCh. 13 - The op amp in the circuit seen in Fig. P13.81 is...Ch. 13 - Prob. 78PCh. 13 - The transfer function for a linear time-invariant...Ch. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - The parallel combination of R2 and C2 in the...Ch. 13 - Show that if R1C1 = R2C2 in the circuit shown in...Ch. 13 - The switch in the circuit in Fig P13.91 has been...Ch. 13 - Prob. 90PCh. 13 - Prob. 91P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,