ELEM.STATS>LL<W/CONNECT-FD
ELEM.STATS>LL<W/CONNECT-FD
3rd Edition
ISBN: 9781265235239
Author: Navidi
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13.2, Problem 7E

a.

To determine

To construct:a 95% confidence interval for mean response when x=2

a.

Expert Solution
Check Mark

Answer to Problem 7E

  7.89±1.5431738

Explanation of Solution

Given information: the sample size 25 , b0=3.25,b1=2.32,se=3.53,(xx¯)2=224.05,x¯=0.98

Formula Used:the formulas to be used when constructing a confidence interval for a mean response and when constructing a prediction interval for an individual response.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for the mean response is

  y±tα/2.se1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for an individual response is

  y±tα/2.se1+1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

the predicted value corresponding to x* when x=2

  y=b0+b1x*y=3.25+2.32(2)y=3.25+4.64y=7.89

The t table corresponding t-value for the given confidence interval 95% and degrees of freedom 23 is not provided in the book. But below shows that the t-valueis 2.069 .

  ELEM.STATS>LL<W/CONNECT-FD, Chapter 13.2, Problem 7E , additional homework tip  1

Now to construct prediction interval for the mean response.

  y±tα/2.se1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 7.89±tα/23.531 25+ (20.98) 2 224.057.89±tα/23.531 25+ (1.02) 2 224.057.89±tα/23.531 25+ 1.0404 224.057.89±tα/23.530.04+ 1.0404 224.057.89±tα/23.530.04+0.004643606337.89±tα/23.530.044643606337.89±tα/23.53(0.21129033659)7.89±tα/20.74585488817

  7.89±tα/20.745854888177.89±(2.069)(0.74585488817)7.89±1.5431738

b.

To determine

To construct: a 95% prediction interval for individual response when x=2

b.

Expert Solution
Check Mark

Answer to Problem 7E

  7.89±7.4648188

Explanation of Solution

Given information: the sample size 25 , b0=3.25,b1=2.32,se=3.53,(xx¯)2=224.05,x¯=0.98

Formula Used:the formulas to be used when constructing a confidence interval for a mean response and when constructing a prediction interval for an individual response.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for the mean response is

  y±tα/2.se1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for an individual response is

  y±tα/2.se1+1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

the predicted value corresponding to x* when x=2

  y=b0+b1x*y=3.25+2.32(2)y=3.25+4.64y=7.89

The t table corresponding t-value for the given confidence interval 95% and degrees of freedom 23 is not provided.But below shows that the t-value is 2.069 .

  ELEM.STATS>LL<W/CONNECT-FD, Chapter 13.2, Problem 7E , additional homework tip  2

Now to construct prediction interval for the individual response.

  y±tα/2.se1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 y±tα/2.se1+1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 7.89±tα/23.531+1 25+ (20.98) 2 224.057.89±tα/23.531+0.04+ 1.0404 224.057.89±tα/23.531+0.04+ 1.0404 224.057.89±tα/23.531.044643606347.89±tα/23.53(1.02207808231)7.89±tα/23.60793563055

  7.89±tα/23.607935630557.89±(2.069)(3.60793563055)7.89±7.4648188

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
32. Consider a normally distributed population with mean μ = 80 and standard deviation σ = 14. a. Construct the centerline and the upper and lower control limits for the chart if samples of size 5 are used. b. Repeat the analysis with samples of size 10. 2080 101 c. Discuss the effect of the sample size on the control limits.
Consider the following hypothesis test. The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n 1 = 80 n 2 = 70 x 1 = 104 x 2 = 106 σ 1 = 8.4 σ 2 = 7.6 What is the value of the test statistic? If required enter negative values as negative numbers (to 2 decimals). What is the p-value (to 4 decimals)? Use z-table. With  = .05, what is your hypothesis testing conclusion?
Periodically, Merrill Lynch customers are asked to evaluate Merrill Lynch financial consultants and services (2000 Merrill Lynch Client Satisfaction Survey). Higher ratings on the client satisfaction survey indicate better service with 7 the maximum service rating. Independent samples of service ratings for two financial consultants are summarized here. Consultant A has 10 years of experience, whereas consultant B has 1 year of experience. Use  = .05 and test to see whether the consultant with more experience has the higher population mean service rating.   Consultant A   Consultant B   = 16     = 10   = 6.82     = 6.25   = .64     = .75   State the null and alternative hypotheses.H0:  1 -  2 Ha:  1 -  2  Compute the value of the test statistic (to 2 decimals). What is the p-value?The p-value is  What is your conclusion?

Chapter 13 Solutions

ELEM.STATS>LL<W/CONNECT-FD

Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 26aECh. 13.1 - Calculator display: The following TI-84 Plus...Ch. 13.1 - Prob. 28aECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Confidence interval for the conditional mean: In...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Dry up: Use the data in Exercise 26 in Section...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - In Exercises 9 and 10, determine whether the...Ch. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - For the following data set: Construct the multiple...Ch. 13.3 - Engine emissions: In a laboratory test of a new...Ch. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13 - A confidence interval for 1 is to be constructed...Ch. 13 - A confidence interval for a mean response and a...Ch. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Construct a 95% confidence interval for 1.Ch. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Air pollution: Following are measurements of...Ch. 13 - Icy lakes: Following are data on maximum ice...Ch. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 1WAICh. 13 - Prob. 2WAICh. 13 - Prob. 1CSCh. 13 - Prob. 2CSCh. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CSCh. 13 - Prob. 6CSCh. 13 - Prob. 7CS
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License