Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.1, Problem 13.39P
To determine
Find the angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Dynamic Lecture:
The 2 kg BC ring can only move left and right on the frictionless rigid arm. Ring BC is connected to springs with spring constants k = 300 N / m and k ′ = 200 N / m at points AB and CD. The unstretched length of both springs is 600 mm. Since it is known that the springs are not tensioned and starts from rest, find the velocity of the ring BC at the moment when the external force F is applied 200 mm.
A section of track for a roller coaster consists of two circular arcs AB and CD joined by a straight portion BC. The radius of AB is 27 m
and the radius of CD is 72 m. The car and its occupants, of total mass 263 kg, reach point A with practically no velocity and then drop
freely along the track. Determine the maximum and minimum values of the normal force exerted by the track on the car as the car
travels from A to D. Ignore air resistance and rolling resistance.
27 m
18 m
r=72m
The minimum normal force exerted by the track is
The maximum normal force exerted by the track is [
6955 N.
6955 N
Q4. If the motorcycle leaves the ramp traveling at 110 ft/s, determine the height h ramp B
must have so that the motorcycle lands safely.
Chapter 13 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - Prob. 13.2PCh. 13.1 - Prob. 13.3PCh. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - 13.6 In an ore-mixing operation, a bucket full of...Ch. 13.1 - Prob. 13.7PCh. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - Prob. 13.9P
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Prob. 13.12PCh. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - Prob. 13.16PCh. 13.1 - Prob. 13.17PCh. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - Prob. 13.19PCh. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - Prob. 13.22PCh. 13.1 - Prob. 13.23PCh. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg,...Ch. 13.1 - Prob. 13.25PCh. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26, assuming that the 2-kg block is...Ch. 13.1 - Prob. 13.28PCh. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - Prob. 13.32PCh. 13.1 - Prob. 13.33PCh. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Prob. 13.35PCh. 13.1 - Prob. 13.36PCh. 13.1 - Prob. 13.37PCh. 13.1 - Prob. 13.38PCh. 13.1 - Prob. 13.39PCh. 13.1 - The sphere at A is given a downward velocity v0...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42, determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - Prob. 13.45PCh. 13.1 - Prob. 13.46PCh. 13.1 - Prob. 13.47PCh. 13.1 - Prob. 13.48PCh. 13.1 - Prob. 13.49PCh. 13.1 - Prob. 13.50PCh. 13.1 - A 1400-kg automobile starts from rest and travels...Ch. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - Prob. 13.3CQCh. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - Prob. 13.58PCh. 13.2 - Prob. 13.59PCh. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28,...Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - It is shown in mechanics of materials that the...Ch. 13.2 - Prob. 13.64PCh. 13.2 - A 500-g collar can slide without friction along...Ch. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - 13.70 A section of track for a roller coaster...Ch. 13.2 - 13.71 A section of track for a roller coaster...Ch. 13.2 - A 1-lb collar is attached to a spring and slides...Ch. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.74PCh. 13.2 - Prob. 13.75PCh. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - Prob. 13.78PCh. 13.2 - Prove that a force F(x, y, z) is conservative if,...Ch. 13.2 - The force F = (yzi + zxj + xyk)/xyz acts on the...Ch. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - Prob. 13.85PCh. 13.2 - A satellite describes an elliptic orbit of minimum...Ch. 13.2 - While describing a circular orbit 200 mi above the...Ch. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - (a) Show that, by setting r = R + y in the...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - A governor is designed so that the valve of...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - Using the principles of conservation of energy and...Ch. 13.2 - Prob. 13.99PCh. 13.2 - A spacecraft is describing an elliptic orbit of...Ch. 13.2 - While describing a circular orbit, 185 mi above...Ch. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - A space vehicle is in a circular orbit at an...Ch. 13.2 - Prob. 13.111PCh. 13.2 - Show that the values vA and vP of the speed of an...Ch. 13.2 - Show that the total energy E of an earth satellite...Ch. 13.2 - A space probe describes a circular orbit of radius...Ch. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass m describes a circular orbit...Ch. 13.2 - Using the answers obtained in Prob. 13.108, show...Ch. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - Prob. 13.1IMDCh. 13.3 - Prob. 13.2IMDCh. 13.3 - Prob. 13.3IMDCh. 13.3 - Prob. 13.4IMDCh. 13.3 - Prob. 13.5IMDCh. 13.3 - A 35 000-Mg ocean liner has an initial velocity of...Ch. 13.3 - A 2500-lb automobile is moving at a speed of 60...Ch. 13.3 - Prob. 13.121PCh. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Prob. 13.125PCh. 13.3 - The 18 000-kg F-35B uses thrust vectoring to allow...Ch. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - A tractor-trailer rig with a 2000-kg tractor, a...Ch. 13.3 - Prob. 13.132PCh. 13.3 - An 8-kg cylinder C rests on a 4-kg platform A...Ch. 13.3 - An estimate of the expected load on...Ch. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - Prob. 13.140PCh. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - The last segment of the triple jump...Ch. 13.3 - The design for a new cementless hip implant is to...Ch. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - 13.145 A 25-ton railroad car moving at 2.5 mi/h is...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Bullet B weighs 0.5 oz and blocks A and C both...Ch. 13.3 - A 180-lb man and a 120-lb woman stand at opposite...Ch. 13.3 - A 75-g ball is projected from a height of 1.6 m...Ch. 13.3 - A ballistic pendulum is used to measure the speed...Ch. 13.3 - Prob. 13.153PCh. 13.3 - Prob. 13.154PCh. 13.4 - A 5-kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - A sphere with a speed v0 rebounds after striking a...Ch. 13.4 - Prob. 13.7IMDCh. 13.4 - Prob. 13.8IMDCh. 13.4 - A 10-kg ball A moving horizontally at 12 m/s...Ch. 13.4 - Prob. 13.10IMDCh. 13.4 - Prob. 13.155PCh. 13.4 - Prob. 13.156PCh. 13.4 - Prob. 13.157PCh. 13.4 - Prob. 13.158PCh. 13.4 - To apply shock loading to an artillery shell, a...Ch. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Prob. 13.161PCh. 13.4 - At an amusement park, there are 200-kg bumper cars...Ch. 13.4 - At an amusement park there are 200-kg bumper cars...Ch. 13.4 - Prob. 13.164PCh. 13.4 - 13.165 Two identical pool balls with a 2.37-in....Ch. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - Prob. 13.170PCh. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Prob. 13.172PCh. 13.4 - From experimental tests, smaller boulders tend to...Ch. 13.4 - Prob. 13.174PCh. 13.4 - A 1-kg block B is moving with a velocity v0 of...Ch. 13.4 - A 0.25-lb ball thrown with a horizontal velocity...Ch. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Prob. 13.178PCh. 13.4 - A 5-kg sphere is dropped from a height of y = 2 m...Ch. 13.4 - A 5-kg sphere is dropped from a height of y = 3 m...Ch. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Ball B is hanging from an inextensible cord. An...Ch. 13.4 - A 70-g ball B dropped from a height h0 = 1.5 m...Ch. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of = 30, the 1-lb...Ch. 13.4 - When the rope is at an angle of = 30, the 1-kg...Ch. 13 - Prob. 13.190RPCh. 13 - Prob. 13.191RPCh. 13 - Prob. 13.192RPCh. 13 - Prob. 13.193RPCh. 13 - 13.194 A 50-lb sphere A with a radius of 4.5 in....Ch. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - Prob. 13.197RPCh. 13 - Prob. 13.198RPCh. 13 - A 2-kg ball B is traveling horizontally at 10 m/s...Ch. 13 - A 2-kg block A is pushed up against a spring...Ch. 13 - The 2-lb ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 195-g slider has a speed v = 1.9 m/s as it passes point A of the smooth guide, which lies in a horizontal plane. Determine the magnitude R of the force which the guide exerts on the slider (a) just before it passes point A of the guide and (b) as it passes point B. Answers: (a) RA= (b) RB i i 225 mm B N Narrow_forwardThe hollow tube assembly rotates about a vertical axis with a constant angular velocity of 6 rad/s. A small 2.3-kg slider P moves inside the smooth horizontal tube portion under the control of the string which passes out the bottom of the assembly. The slider is pulled in towards O at a constant rate of 0.31 m/s. What is the tension in the cord when r= 0.15 m? Die hol buiseenheid roteer om 'n vertikale as met 'n konstante hoeksnelheid van 6 rad/s. 'n Klein 2.3-kg skuifstuk P beweeg binne in die gladde horisontale buisgedeelte onder die beheer van die tou wat aan die onderkant van die eenheid uitsteek. Die skuifstuk word teen 'n konstante tempo van 0.31 m/s na O ingetrek. Wat is die spanning in die koord as r = 0.15 m?arrow_forwardВ (3) A smooth can C, having a mass of 3 kg, is lifted from Ö=2rad/s² é = 0.5 rad/s a feed at A to a ramp at B by a rotating rod. If the rod rotates angular velocity of 0=0.5 rad/s and Ö=2rad/s2, determine the forces which the rod and 600 mm circular ramp in the vertical plane exert on the can at the instant 0=30°. Neglect the friction and the size of the can so that r = (1.2cos6) m. The ramp -600 mm- from A to B is circular, having a radius of 600 mm. m-5 kgarrow_forward
- . A device called air-track glider has a mass of 150gm is attached to the end of a horizontal air-track by a spring with a force constant 20N/m as shown below. Initially the spring is unstretched and the glider is moving at 3.50m/s to the right. Find the maximum distance d that the glider moves to the right, if the air is turned off, so that there is kinetic friction with coeficient He=0.40 gliderarrow_forwardThe 150-kg glider B is being towed by airplane A, which is flying horizontally with a constant speed of v = 218 km/h. The tow cable has a length r = 51 m and may be assumed to form a straight line. The glider is gaining altitude and when θ reaches 16°, the angle is increasing at the constant rate = 3 deg/s. At the same time the tension in the tow cable is 1235 N for this position. Calculate the ff: a. the magnitude of the acceleration of glider B. b. aerodynamic lift L and drag D acting on the glider.arrow_forwardQuestion 1: The 40-kg crate is being hoisted by the motor. If at this instant shown the velocity of point P on the cable is 4 m/s and the speed is increasing at 2 m/s?, what is the power input supplied to the motor if its efficiency is &=0.75? Neglect the mass of pulley and cable. P (а) 0.649 kW (b) 0.865 kW (c) 1.15 kW (d) 1.53 kW Vp= 4 m/s Aarrow_forward
- Pravinbhaiarrow_forward(b) A packet of mass 5 Kg leaves the point A with velocity V=0.85 over a smooth belt. To deliver the packet at B without slipping on the belt Determine the speed of the belt. If the radius of curvature of the curve is 3 m Calculate the normal force exerted on the packet 4 m В VBarrow_forwardThe 150-kg glider B is being towed by airplane A, which is flying horizontally with a constant speed of v = 218 km/h. The tow cable has a length r = 51 m and may be assumed to form a straight line. The glider is gaining altitude and when e reaches 16°, the angle is increasing at the constant rate ở = 3 deg/s. At the same time the tension in the tow cable is 1235 N for this position. Calculate the aerodynamic lift L and drag D acting on the glider. Assume o = 11°. B A Part 1 Calculate the magnitude of the acceleration of glider B. Answer: a = i m/s? Attempts: 0 of 1 used Submit Answer Save for Later Part 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forward
- A 1.4-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 8.2 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate v at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. B 32 3.1' Answers: N = i Ib i ft/sec?arrow_forwardA 2.9-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 8.0 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate v at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. 3.1' Answers: N = i v= lb ft/sec²arrow_forwardThe 5-oz pinewood-derby car is released from restat the starting line A and crosses the fi nish lineC 2.75 sec later. The transition at B is small andsmooth. Assume that the net retarding force is constant throughout the run and find this forcearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License