Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
5th Edition
ISBN: 9780134032610
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 9PCE
A mass moves back and forth in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
need help part e
Critical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.
NASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and
passengers float freely in apparent "weightlessness."
The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low.
31 000
45° nose high
45° nose low
24 000
Zero g
65
Maneuver time (s)
(a) What is the aircraft's speed (in m/s) at the top of the parabolic arc?
110.0
m/s
(b) What is the aircraft's altitude (in ft) at the top of the parabolic arc?
2.04e+04
What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…
Chapter 13 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Ch. 13.1 - If the frequency of an oscillator is halved, by...Ch. 13.2 - Prob. 2EYUCh. 13.3 - An object moves with simple harmonic motion about...Ch. 13.4 - Rank the four massspring systems in Figure 13-15...Ch. 13.5 - The total mechanical energy of an ideal...Ch. 13.6 - Rank the four pendulum systems in Figure 13-25 in...Ch. 13.7 - The amplitude of a damped oscillation decreases...Ch. 13.8 - When you drive a pendulum at a frequency f1, you...Ch. 13 - A basketball player dribbles a ball with a steady...Ch. 13 - A person rides on a Ferris wheel that rotates with...
Ch. 13 - An air-track cart bounces back and forth between...Ch. 13 - If a mass m and a mass 2m oscillate on identical...Ch. 13 - An object oscillating with simple harmonic motion...Ch. 13 - The position of an object undergoing simple...Ch. 13 - The pendulum bob in Figure 13-18 leaks sand onto...Ch. 13 - A person in a rocking chair completes 12 cycles in...Ch. 13 - While fishing for catfish, a fisherman suddenly...Ch. 13 - If you dribble a basketball with a frequency of...Ch. 13 - You take your pulse and observe 74 heartbeats in a...Ch. 13 - BIO Slow-Motion Dragonfly A frame-by-frame...Ch. 13 - Predict/Calculate (a) Your heart beats with a...Ch. 13 - You rev your cars engine to 3300 rpm (rev/min)....Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - A position-versus-time plot for an object...Ch. 13 - A mass on a spring oscillates with simple harmonic...Ch. 13 - A mass oscillates on a spring with a period of...Ch. 13 - Predict/Calculate Molecular Oscillations An atom...Ch. 13 - A mass oscillates on a spring with a period T and...Ch. 13 - The position of a mass on a spring is given by x =...Ch. 13 - Predict/Calculate A mass attached to a spring...Ch. 13 - A lawn sprinkler oscillates with simple harmonic...Ch. 13 - A ball rolls on a circular track of radius 0.62 m...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - A child rocks back and forth on a porch swing with...Ch. 13 - Predict/Calculate A 30.0-g goldfinch lands on a...Ch. 13 - BIO Tuning Forks in Neurology Tuning forks are...Ch. 13 - A vibrating structural beam in a spacecraft can...Ch. 13 - A peg on a turntable moves with a constant...Ch. 13 - The pistons in an internal combustion engine...Ch. 13 - Vomit Comet NASA trains astronauts to deal with...Ch. 13 - A 0.84-kg air cart is attached to a spring and...Ch. 13 - Predict/Calculate A person rides on a mechanical...Ch. 13 - An object moves with simple harmonic motion of...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - Predict/Explain If a mass m is attached to a given...Ch. 13 - Predict/Explain An old car with worn-out shock...Ch. 13 - Predict/Explain The two blocks in Figure 13-34...Ch. 13 - A 0.49-kg mass attached to a spring undergoes...Ch. 13 - A freshly caught catfish is placed on a spring...Ch. 13 - System A consists of a mass m attached to a spring...Ch. 13 - Find the periods of block 1 and block 2 in Figure...Ch. 13 - When a 0.62-kg mass is attached to a vertical...Ch. 13 - A spring with a force constant of 82 N/m is...Ch. 13 - A bunch of grapes is placed in a spring scale at a...Ch. 13 - Two people with a combined mass of 125 kg hop into...Ch. 13 - A 0.95-kg mass attached to a vertical spring of...Ch. 13 - When a 0.184-kg mass is attached to a vertical...Ch. 13 - Predict/Calculate The springs of a 511-kg...Ch. 13 - Predict/Calculate If a mass m is attached to a...Ch. 13 - A 0.285-kg mass is attached to a spring with a...Ch. 13 - A 1.6-kg mass attached to a spring oscillates with...Ch. 13 - Predict/Calculate A 0.40-kg mass is attached to a...Ch. 13 - Prob. 51PCECh. 13 - BIO Astronaut Mass An astronaut uses a Body Mass...Ch. 13 - Predict/Calculate A 0.505-kg block slides on a...Ch. 13 - A 3.55-g bullet embeds itself in a 1.47-kg block,...Ch. 13 - Metronomes, such as the penguin shown in Figure...Ch. 13 - Predict/Explain A grandfather clock keeps correct...Ch. 13 - An observant fan at a baseball game notices that...Ch. 13 - A simple pendulum of length 2.3 m makes 5.0...Ch. 13 - United Nations Pendulum A large pendulum with a...Ch. 13 - Predict/Calculate If the pendulum in the previous...Ch. 13 - A Hula Hoop hangs from a peg. Find the period of...Ch. 13 - A fireman tosses his 0.98-kg hat onto a peg, where...Ch. 13 - Predict/Calculate Consider a meterstick that...Ch. 13 - On the construction site for a new skyscraper, a...Ch. 13 - BIO (a) Find the period of a childs leg as it...Ch. 13 - Suspended from the ceiling of an elevator is a...Ch. 13 - CE An object undergoes simple harmonic motion with...Ch. 13 - CE If the amplitude of a simple harmonic...Ch. 13 - CE A mass m is suspended from the ceiling of an...Ch. 13 - CE A pendulum of length L is suspended from the...Ch. 13 - A 1.3-kg mass is attached to a spring with a force...Ch. 13 - BIO Measuring an Astronauts Mass An astronaut uses...Ch. 13 - Sunspot Observations Sunspots vary in number as a...Ch. 13 - BIO Weighing a Bacterium Scientists are using...Ch. 13 - CE An object undergoing simple harmonic motion...Ch. 13 - The maximum speed of a 4.1-kg mass attached to a...Ch. 13 - The acceleration of a block attached to a spring...Ch. 13 - Helioseismology In 1962, physicists at Cal Tech...Ch. 13 - Predict/Calculate A 9.50-g bullet, moving...Ch. 13 - BIO Spiderweb Oscillations A 1.44-g spider...Ch. 13 - A service dog tag (Figure 13-40) is a circular...Ch. 13 - Calculate the ratio of the kinetic energy to the...Ch. 13 - A 0.340-kg mass slides on a frictionless floor...Ch. 13 - A shock absorber is designed to quickly damp out...Ch. 13 - Predict/Calculate Figure 13-41 shows a...Ch. 13 - Predict/Calculate A 3.2-kg mass on a spring...Ch. 13 - A 0.45-kg crow lands on a slender branch and bobs...Ch. 13 - A mass m is connected to the bottom of a vertical...Ch. 13 - Predict/Calculate Consider the pendulum shown in...Ch. 13 - An object undergoes simple harmonic motion of...Ch. 13 - A physical pendulum consists of a light rod of...Ch. 13 - Predict/Calculate A vertical hollow tube is...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - Predict/Calculate Referring to Example 13-5...Ch. 13 - Predict/Calculate Referring to Example 13-12...Ch. 13 - Predict/Calculate Referring to Example 13-12 (a)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In mice, black coat color is dominant to white coat color. In the pedigree shown here, mice with a black coat a...
Genetic Analysis: An Integrated Approach (3rd Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
DRAW IT In human spermatogenesis, mitosis of a stem cell gives rise to one cell that remains a stem cell and on...
Campbell Biology (11th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?arrow_forwardneed help part darrow_forwardA cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following. Assume +x is in the eastward direction. (a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.) magnitude direction For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…arrow_forward
- î A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forward
- For which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY