Concept explainers
Consider the following six beakers. All have 100 mL of aqueous 0.1 M solutions of the following compounds:
beaker A has HI
beaker B has HNO2
beaker C has NaOH
beaker D has Ba(OH)2
beaker E has NH4Cl
beaker F has C2H5NH2
Answer the questions below, using LT (for is less than), GT (for is greater than), EQ (for is equal to), or MI (for more Information required).
(a) The pH in beaker A the pH in beaker B.
(b) The pH in beaker C the pH in beaker D.
(c) The % ionization in beaker A the % ionization in beaker C.
(d) The pH in beaker B the pH in beaker E.
(e) The pH in beaker E the pH in beaker F.
(f) The pH in beaker C the pH in beaker F.
(a)
Interpretation:
The pH in beaker A and beaker B needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The pH in beaker A is less than (LT) the pH in B.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
In beaker A, HI is a strong acid thus, the value of pH is less than the pH in beaker B which contains a weak acid
Therefore, the pH in beaker A is less than the pH in B.
(b)
Interpretation:
The pH in beaker C and beaker D needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH in beaker C is less than (LT) the pH in beaker D
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The beaker C and D both contains strong base. The beaker C contains
Thus, the concentration of hydroxide ion in beaker D will be twice the concentration of hydroxide ion in beaker C.
If concentration of hydroxide ion increases, the value of pOH decreases and that of pH increases. Thus, the value of pH in beaker C is less than the pH in beaker D.
(c)
Interpretation:
The percent ionization in beaker A and beaker C needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The ionization percent of HF will be equal to (EQ) that of NaOH.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The percent ionization of a strong acid/base is more than a weak acid/base. Beaker A contains HF and beaker C contains NaOH.
Both HF and NaOH are strong and completely dissociates into their respective ions.
Therefore, ionization percent of HF will be equal to that of NaOH.
(d)
Interpretation:
The pH in beaker B and beaker E needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH will be less than 7 but the exact value cannot be calculated as it required more information. (MI)
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The beaker B contains weak acid
Here,
The salt is formed from HCl and
(e)
Interpretation:
The pH in beaker E and beaker F needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH in beaker E is less than (LT) beaker F.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The beaker E contains
The Beaker F contains
Therefore, the value of pH in beaker E is less than beaker F.
(f)
Interpretation:
The pH in beaker C and beaker F needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH in beaker C is greater than (GT) pH in beaker F.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
Beaker C contains a strong acid the pH will be highly greater than 7 and beaker F contains a weak base the value of pH will be greater than 7 but less than the value in beaker C.
Therefore, the value of pH in beaker C is greater than pH in beaker F.
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Reactions
- Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardDraw the skeletal structure of the alkane 4-ethyl-2, 2, 5, 5- tetramethylnonane. How many primary, secondary, tertiary, and quantenary carbons does it have?arrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardThe number of imaginary replicas of a system of N particlesA) can never become infiniteB) can become infiniteC) cannot be greater than Avogadro's numberD) is always greater than Avogadro's number.arrow_forwardElectronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forward
- Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward(please correct answer and don't used hand raiting) Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning