
Concept explainers
Consider the following six beakers. All have 100 mL of aqueous 0.1 M solutions of the following compounds:
beaker A has HI
beaker B has HNO2
beaker C has NaOH
beaker D has Ba(OH)2
beaker E has NH4Cl
beaker F has C2H5NH2
Answer the questions below, using LT (for is less than), GT (for is greater than), EQ (for is equal to), or MI (for more Information required).
(a) The pH in beaker A the pH in beaker B.
(b) The pH in beaker C the pH in beaker D.
(c) The % ionization in beaker A the % ionization in beaker C.
(d) The pH in beaker B the pH in beaker E.
(e) The pH in beaker E the pH in beaker F.
(f) The pH in beaker C the pH in beaker F.

(a)
Interpretation:
The pH in beaker A and beaker B needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The pH in beaker A is less than (LT) the pH in B.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
In beaker A, HI is a strong acid thus, the value of pH is less than the pH in beaker B which contains a weak acid
Therefore, the pH in beaker A is less than the pH in B.

(b)
Interpretation:
The pH in beaker C and beaker D needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH in beaker C is less than (LT) the pH in beaker D
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The beaker C and D both contains strong base. The beaker C contains
Thus, the concentration of hydroxide ion in beaker D will be twice the concentration of hydroxide ion in beaker C.
If concentration of hydroxide ion increases, the value of pOH decreases and that of pH increases. Thus, the value of pH in beaker C is less than the pH in beaker D.

(c)
Interpretation:
The percent ionization in beaker A and beaker C needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The ionization percent of HF will be equal to (EQ) that of NaOH.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The percent ionization of a strong acid/base is more than a weak acid/base. Beaker A contains HF and beaker C contains NaOH.
Both HF and NaOH are strong and completely dissociates into their respective ions.
Therefore, ionization percent of HF will be equal to that of NaOH.

(d)
Interpretation:
The pH in beaker B and beaker E needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH will be less than 7 but the exact value cannot be calculated as it required more information. (MI)
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The beaker B contains weak acid
Here,
The salt is formed from HCl and

(e)
Interpretation:
The pH in beaker E and beaker F needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH in beaker E is less than (LT) beaker F.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
The beaker E contains
The Beaker F contains
Therefore, the value of pH in beaker E is less than beaker F.

(f)
Interpretation:
The pH in beaker C and beaker F needs to be compared.
Concept introduction:
The dissociation reaction of a weak acid is represented as follows:
The expression for the acid dissociation constant will be as follows:
Here,
The pH of the solution can be calculated as follows:
Here,
Answer to Problem 98QAP
The value of pH in beaker C is greater than (GT) pH in beaker F.
Explanation of Solution
According to the question, there are 6 beakers from beaker A to E.
The aqueous solutions in beakers are as follows:
Beaker A: 0.1 M, 100 mL HI which is a strong acid.
Beaker B: 0.1 M, 100 mL
Beaker C: 0.1 M, 100 mL
Beaker D: 0.1 M, 100 mL
Beaker E: 0.1 M, 100 mL
Beaker F: 0.1 M, 100 mL
Beaker C contains a strong acid the pH will be highly greater than 7 and beaker F contains a weak base the value of pH will be greater than 7 but less than the value in beaker C.
Therefore, the value of pH in beaker C is greater than pH in beaker F.
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Reactions
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





