Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 8ETSQ
To determine
The option that is not an advantage of superplastic forming.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The assembly shown consists of an aluminum shell (E,= 70 GPa, a, = 23.6 × 10-6rC) fully bonded to a steel core (Es = 200 GPa, as =
11.7 x 10-6rC) and the assembly is unstressed at a temperature of 20°C. Considering only axial deformations, determine the stress in
the aluminum when the temperature reaches 215°C.
200 mm
20 mm
Aluminum shell
Steel
50 mm
core
The stress in the aluminum is
MPa.
1. The most important mechanical
properties of brittle materials is
Tensile strength
compressive strength
O rigidity
hardness
Creep
-6
The aluminum shell is fully bonded to the brass core and the assembly is unstressed at a
temperature of 16°C. It is known thatE = 105 GPa and a = 20.9 × 10 °C for the brass core
and E = 71 GPa and a = 23.8 × 10¯6°C for the aluminum shell. Considering only axial
deformations, determine the stress in the aluminum when the temperature reaches 185°C.
25 mm
σα
MPa
-63 mm
Chapter 13 Solutions
Materials Science And Engineering Properties
Ch. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQ
Ch. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 16CQCh. 13 - Prob. 17CQCh. 13 - Prob. 18CQCh. 13 - Prob. 19CQCh. 13 - Prob. 1ETSQCh. 13 - Prob. 2ETSQCh. 13 - Prob. 3ETSQCh. 13 - Prob. 4ETSQCh. 13 - Prob. 5ETSQCh. 13 - Prob. 6ETSQCh. 13 - Prob. 7ETSQCh. 13 - Prob. 8ETSQCh. 13 - Prob. 9ETSQCh. 13 - Prob. 10ETSQCh. 13 - Prob. 11ETSQCh. 13 - Prob. 12ETSQCh. 13 - Prob. 13ETSQCh. 13 - Prob. 14ETSQCh. 13 - Prob. 15ETSQCh. 13 - Prob. 16ETSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Given your understanding of what initiates and controls failure in materials, which of the following will increase the failure strength or lifetime of a test piece or component and why? a. Decreasing the difference between the maximum and minimum stress values, as this effects the stress concentration factor b. Decreasing the temperature below the brittle-ductile transition temperature, to make it harder C. Polishing to reduce surface defects Od. Increasing its volume, to give a larger cross sectional area Oe. Increasing the grain size so there are less grain boundaries to initiate failurearrow_forwardAn aluminum alloy [E = 72 GPa; v = 0.33; a= 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 245 mm, a cross-sectional area of A = 5500 mm², and a length of L = 6.0 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by AT = 69°C, the longitudinal normal strain in the plate is found to be 3340 μc. Determine: (a) the magnitude of load P. (b) the change in plate depth Ad. L P Answer: (a) P = i (b) Δd = i KN mmarrow_forwardAn aluminum alloy [E = 69 GPa; v = 0.33; a = 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 215 mm, a cross-sectional area of A = 5100 mm2, and a length of L = 3.9 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by AT = 53°C, the longitudinal normal strain in the plate is found to be 2320 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Ad. L Answer: (a) P = i (b) Δd = = i d KN mmarrow_forward
- A laminated [0/90/0/90]s graphite/epoxy beam is 1 mm thick, is 20 mm wide, and has 0.125 mm thick plies. The lamina properties are E1 = 180 GPa, E2 = 10 GPa, ν12 = 0.28, G12 = 7 GPa Xt = 1700 MPa, Xc = 1400 MPa, Yt = 40 MPa, Yc = 230 MPa (a) Determine the flexural modulus of the beam (b) How could the flexural modulus be improved without changing the ply materials, the number of plies, or the ply orientations? (c) Using the Maximum Stress Criterion for each ply, determine the magnitude of the maximum allowable bending moment that the beam can withstand. Which ply fails first?arrow_forwardDraw a tensile stress-strain curve for a typical semi-crystalline polymer such as LLDPE, and define the three main regions on the curve.arrow_forwardIf there is to be extensive replacement in a substitutional solid solutions"SSS", the atoms must be nearly the same size. Select one: O True O False The load-deformation depends on the rate of loading in viscoelastic Materials.arrow_forward
- Find the required relationshiparrow_forwardThe strain energy due to volumetric strain (a) Is directly proportional to the volume (b) Is directly proportional to the square of exerted pressure (c) Is inversely proportional to Bulk modulus (d) All options are correctarrow_forwardThe aluminum (E=15x10^10psi, α=11.6x10^-6/°F) shell is fully bonded to the brass (E=10.6x10^6psi, α=12.9x10^-6/°F) sore, and the assembly is unstressed at a temperature of 78°F. Considering only axial deformations, determine the stress when the temperature reaches 180°F (a) in the brass core (b) in the aluminum shellarrow_forward
- As shown, an aluminium alloy construction BCD with a circular cross section is fixed at end B and affected by a force of 150 N at the free end D. The diameter of the cross-section a-a is 20 mm. The yield strength of the material is 80 MPa: a) Determine the stresses at point A of the a-a cross-section. As indicated in the picture, draw the stress element in Cartesian coordinates and specify the stress values.(b) Calculate the factor of safety, n for Tresca, and the von Mises yield criterion to see if the structure would yield based on the stresses at point A.(c) In the major stress area, draw the yield loci of both criteria and indicate the operational stress state & why is the Rankine failure criterion inappropriate for aluminium alloys?arrow_forwardA load applied to a machine component results in the state of plane stress ?x=80 MPa, ?y=100 MPa, ?xy=60 MPa. The component is made of a brittle high-strength steel that follows the maximum normal stress criterion with ?u=200 MPa. If increasing the load increases each stress component proportionally, determine the percentage increase that can be applied before the component fails.arrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning