A spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s 2 , what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y -direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?
A spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s 2 , what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y -direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?
Solution Summary: The author calculates the stretch in the spring when the block is slowly lowered to its equilibrium position.
A spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s2, what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
Chapter 13 Solutions
Bundle: College Physics, Loose-Leaf Version, 10th, + WebAssign Printed Access Card for Serway/Vuille's College Physics, 10th Edition, Multi-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.