Helioseismology In 1962, physicists at Cal Tech discovered that the surface of the Sun vibrates due to the violent nuclear reactions that roil within its core. This has led to a new field of solar science known as helioseismology. A typical vibration of the Sun is shown in Figure 13.39 ; it has a period of 5.7 minutes. The blue patches in Figure 13-39 are moving outward; the red patches are moving inward. (a) Find the angular frequency of this vibration. (b) The maximum speed at which a patch of the surface moves during a vibration is 4.5 m/s. What is the amplitude of the vibration, assuming it to be simple harmonic motion ? Figure 13-39 A typical vibration pattern of the Sun. (Problem 78)
Helioseismology In 1962, physicists at Cal Tech discovered that the surface of the Sun vibrates due to the violent nuclear reactions that roil within its core. This has led to a new field of solar science known as helioseismology. A typical vibration of the Sun is shown in Figure 13.39 ; it has a period of 5.7 minutes. The blue patches in Figure 13-39 are moving outward; the red patches are moving inward. (a) Find the angular frequency of this vibration. (b) The maximum speed at which a patch of the surface moves during a vibration is 4.5 m/s. What is the amplitude of the vibration, assuming it to be simple harmonic motion ? Figure 13-39 A typical vibration pattern of the Sun. (Problem 78)
Helioseismology In 1962, physicists at Cal Tech discovered that the surface of the Sun vibrates due to the violent nuclear reactions that roil within its core. This has led to a new field of solar science known as helioseismology. A typical vibration of the Sun is shown in Figure 13.39; it has a period of 5.7 minutes. The blue patches in Figure 13-39 are moving outward; the red patches are moving inward. (a) Find the angular frequency of this vibration. (b) The maximum speed at which a patch of the surface moves during a vibration is 4.5 m/s. What is the amplitude of the vibration, assuming it to be simple harmonic motion?
Figure 13-39 A typical vibration pattern of the Sun. (Problem 78)
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.