Draw two graphs of your choice that represent a function y = f ( x ) and its vertical shift y = f ( x ) + 3 Pick a value of x and consider the points ( x , f ( x ) ) and ( x , f ( x ) + 3 ) . Draw the tangent lines to the curves at these points and describe what you observe about the tangent lines. Based on your observation in part (b), explain why d d x f ( x ) = d d x ( f ( x ) + 3 )
Draw two graphs of your choice that represent a function y = f ( x ) and its vertical shift y = f ( x ) + 3 Pick a value of x and consider the points ( x , f ( x ) ) and ( x , f ( x ) + 3 ) . Draw the tangent lines to the curves at these points and describe what you observe about the tangent lines. Based on your observation in part (b), explain why d d x f ( x ) = d d x ( f ( x ) + 3 )
Solution Summary: The author explains how the Ti-83 calculator plots the tangent lines for the curve y=f(x).
Draw two graphs of your choice that represent a function
y
=
f
(
x
)
and its vertical shift
y
=
f
(
x
)
+
3
Pick a value of
x
and consider the points
(
x
,
f
(
x
)
)
and
(
x
,
f
(
x
)
+
3
)
. Draw the tangent lines to the curves at these points and describe what you observe about the tangent lines.
Based on your observation in part (b), explain why
d
d
x
f
(
x
)
=
d
d
x
(
f
(
x
)
+
3
)
The graph of f(x) is given below. Select all of the true statements about the continuity of f(x) at x = -1.
654
-2-
-7-6-5-4-
2-1
1 2
5 6 7
02.
Select all that apply:
☐ f(x) is not continuous at x = -1 because f(-1) is not defined.
☐ f(x) is not continuous at x = −1 because lim f(x) does not exist.
x-1
☐ f(x) is not continuous at x = −1 because lim ƒ(x) ‡ ƒ(−1).
☐ f(x) is continuous at x = -1
J-←台
Let h(x, y, z)
=
—
In (x) — z
y7-4z
-
y4
+ 3x²z — e²xy ln(z) + 10y²z.
(a) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to x, 2 h(x, y, z).
მ
(b) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to y, 2 h(x, y, z).
ints) A common representation of data uses matrices and vectors, so it is helpful
to familiarize ourselves with linear algebra notation, as well as some simple operations.
Define a vector ♬ to be a column vector. Then, the following properties hold:
• cu with c some constant, is equal to a new vector where every element in cv is equal
to the corresponding element in & multiplied by c. For example, 2
2
=
● √₁ + √2 is equal to a new vector with elements equal to the elementwise addition of
₁ and 2. For example,
問
2+4-6
=
The above properties form our definition for a linear combination of vectors. √3 is a
linear combination of √₁ and √2 if √3 = a√₁ + b√2, where a and b are some constants.
Oftentimes, we stack column vectors to form a matrix. Define the column rank of
a matrix A to be equal to the maximal number of linearly independent columns in
A. A set of columns is linearly independent if no column can be written as a linear
combination of any other column(s) within the set. If all…
Chapter 1 Solutions
MyLab Math with Pearson eText -- 24 Month Access -- for Calculus & Its Applications
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.