(a)
Interpretation: The boiling point and freezing point of the given solution of glucose in ethanol should be determined.
Concept Introduction:
The elevation in boiling point of the ethanol is calculated by using the formula,
Where,
- is the elevation in boiling point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal boiling point elevation constant refer table 13.3)
Where,
- is the depression in freezing point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal freezing point depression constant refer table13.3)
(b)
Interpretation: The boiling point and freezing point of the given solution of decane in chloroform should be calculated.
Concept Introduction:
The elevation in boiling point of the ethanol is calculated by using the formula,
Where,
- is the elevation in boiling point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal boiling point elevation constant refer table 13.3)
Where,
- is the depression in freezing point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal freezing point depression constant refer table13.3)
(c)
Interpretation: The boiling point and freezing point of the given solution of in water should be calculated.
Concept Introduction:
The elevation in boiling point of the ethanol is calculated by using the formula,
Where,
- is the elevation in boiling point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal boiling point elevation constant refer table 13.3)
Where,
- is the depression in freezing point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal freezing point depression constant refer table13.3)
(d)
Interpretation: The boiling point and freezing point of the given solution of ethylene glycol and in water should be calculated.
Concept Introduction:
The elevation in boiling point of the ethanol is calculated by using the formula,
Where,
- is the elevation in boiling point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal boiling point elevation constant refer table 13.3)
Where,
- is the depression in freezing point.
- is the van’t Hoff factor which describes the number of ions of solute particles in the solution.
- is the molality of the solution.
- is the molal freezing point depression constant refer table13.3)
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
CHM 101 VOL 1 2014 >IC<
- Q9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forwardComplete the following reaction by identifying the principle organic product of the reactionarrow_forwardDenote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward
- (a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward10:16 ☑ Vo)) Vo) 4G LTE 76% Complete the following reaction by identifying the principle organic product of the reaction. HO OH ↑ CH2N2 OH ? ○ A. 01 N₂H2C OH ОН B. HO OCH3 OH ○ C. HO OH ŎCH₂N2 ○ D. H3CO OH он Quiz navigation 1 2 3 4 5 11 12 Next page 10 6 7 8 9 10arrow_forwardWhich one of the following statements explain why protecting groups are referred to as “a necessary evil in organic synthesis”? Question 12Select one or more: A. They increase the length and cost of the synthesis B. Every synthesis employs protecting groups C. Protecting group have no role to play in a synthesis D. They minimize the formation of side productsarrow_forward
- Which of the following attributes is a key advantage of the chiral auxiliary approach over the chiral pool approach in asymmetric synthesis? Question 10Select one: A. Chiral auxiliaries are cheaper than chiral pool substrates B. Chiral auxiliary can be recovered and recycled unlike chiral pool substrates. C. The use of chiral auxiliaries provide enantiopure products, while chiral pool reactions are only enantioselective D. The chiral auxiliaries are naturally occurring and do not require synthesisarrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 CH3 H3C HO: CI:arrow_forwardWhich of the following are TRUE about linear syntheses? Question 7Select one: A. They are easier to execute B. They are the most efficient strategy for all syntheses C. They are generally shorter than convergent syntheses D. They are less versatile compared to convergent synthesesarrow_forward
- Which of the following characteristics is common among chiral pool substrates? Question 4Select one: A. They have good leaving groups B. They are all achiral C. All have a multiplicity of chiral centres D. They have poor leaving groupsarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: H NO2 H+ NO 2 + Molecule A Molecule B Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. What word or two-word phrase is used to describe the role Molecule A plays in this reaction? What word or two-word phrase is used to describe the role Molecule B plays in this reaction? Use a 6 + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. O Yes ○ No ☐ 0 dx 000 HE ?arrow_forwardDraw the major organic product of the Bronsted acid-base reaction. Include all lone pairs and charges as appropriate. Ignore any counterions. :0: NaOH Harrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY