COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 74AP
Figure P13.74 shows a crude model of an insect wing. The mass m represents the entire mass of the wing, which pivots about the fulcrum F. The spring represents the surrounding connective tissue. Motion of the wing corresponds to vibration of the spring. Suppose the mass of the wing is 0.30 g and the effective spring constant of the tissue is 4.7 ×10−4 N/m. If the mass m moves up and down a distance of 2.0 mm from its position of equilibrium, what is the maximum speed of the outer tip of the wing?
Figure P13.74
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A clock has a pendulum that performs one full swing every 1.14 s (back and forth). The object at the end of the pendulum weighs 10.0 N. What is the length of the pendulum?
Answer must be in scientific notation with SI units that do not have prefixes except for kg. (m/s not cm/s). Answer must be in standard form scientific notation. All angles are to be calculated to the nearest 0.1 deg (tenth of a degree).
You are designing a pendulum for a science museum. The pendulum is made by attaching a brass sphere with mass mm to the lower end of a long, light metal wire of (unknown) length LL. A device near the top of the wire measures the tension in the wire and transmits that information to your laptop computer. When the wire is vertical and the sphere is at rest, the sphere's center is 0.800 mm above the floor and the tension in the wire is 265 NN. Keeping the wire taut, you then pull the sphere to one side (using a ladder if necessary) and gently release it. You record the height hh of the center of the sphere above the floor at the point where the sphere is released and the tension TT in the wire as the sphere swings through its lowest point. You collect your results in the table below. Assume that the sphere can be treated as a point mass, ignore the mass of the wire, and assume that mechanical energy is conserved through each measurement.
hh (mm)
0.800
2.00
4.00
6.00
8.00
10.0
12.0…
Chapter 13 Solutions
COLLEGE PHYSICS,V.2
Ch. 13.1 - A block on the end of a horizontal spring is...Ch. 13.1 - For a simple harmonic oscillator, which of the...Ch. 13.2 - When an object moving in simple harmonic motion is...Ch. 13.3 - An object of mass m is attached to a horizontal...Ch. 13.3 - Prob. 13.5QQCh. 13.4 - If the amplitude of a system moving in simple...Ch. 13.5 - A simple pendulum is suspended from the ceiling of...Ch. 13.5 - A pendulum dork depends on the period of a...Ch. 13.5 - The period of a simple pendulum is measured to be...Ch. 13 - An objectspring system undergoes simple harmonic...
Ch. 13 - If an objectspring system is hung vertically and...Ch. 13 - The spring in Figure CQ13.3 is stretched from its...Ch. 13 - If the spring constant shown in Figure CQ13.3 is...Ch. 13 - If the spring shown in Figure CQ13.3 is com...Ch. 13 - If a spring is cut in half, what happens to its...Ch. 13 - A pendulum bob is made from a sphere filled with...Ch. 13 - A block connected to a horizontal spring is in...Ch. 13 - (a) Is a bouncing ball an example of simple...Ch. 13 - If a grandfather clock were running slow, how...Ch. 13 - What happens to the speed of a wave on a string...Ch. 13 - Prob. 12CQCh. 13 - Waves are traveling on a uniform string under...Ch. 13 - Identify each of the following waves as either...Ch. 13 - A block, of mass m = 0.60 kg attached to a spring...Ch. 13 - A spring oriented vertically is attached to a hard...Ch. 13 - The force constant of a spring is 137 N/m. Find...Ch. 13 - A spring is hung from a ceiling, and an object...Ch. 13 - A biologist hangs a sample of mass 0.725 kg on a...Ch. 13 - An archer must exert a force of 375 N on the...Ch. 13 - A spring 1.50 m long with force constant 475 N/m...Ch. 13 - A block of mass m = 2.00 kg is attached to a...Ch. 13 - A slingshot consists of a light leather cup...Ch. 13 - An archer pulls her bowstring back 0.400 m by...Ch. 13 - A student pushes the 1.50-kg block in Figure...Ch. 13 - An automobile having a mass of 1.00 103 kg is...Ch. 13 - A 10.0-g bullet is fired into, and embeds itself...Ch. 13 - An object-spring system moving with simple...Ch. 13 - A horizontal block-spring system with the block on...Ch. 13 - A 0.250-kg block attached to a light spring...Ch. 13 - A block-spring system consists of a spring with...Ch. 13 - A 0.40-kg object connected to a light spring with...Ch. 13 - At an outdoor market, a bunch of bananas attached...Ch. 13 - A student stretches a spring, attaches a 1.00-kg...Ch. 13 - A horizontal spring attached to a wall has a force...Ch. 13 - An object moves uniformly around a circular path...Ch. 13 - The wheel in the simplified engine of Figure...Ch. 13 - The period of motion of an object-spring system is...Ch. 13 - A vertical spring stretches 3.9 cm when a 10.-g...Ch. 13 - When four people with a combined mass of 320 kg...Ch. 13 - The position of an object connected to a spring...Ch. 13 - A harmonic oscillator is described by the function...Ch. 13 - A 326-g object is attached to a spring and...Ch. 13 - An object executes simple harmonic motion with an...Ch. 13 - A 2.00-kg object on a frictionless horizontal...Ch. 13 - A spring of negligible mass stretches 3.00 cm from...Ch. 13 - Given that x = A cos (t) is a sinusoidal function...Ch. 13 - A man enters a tall tower, needing to know its...Ch. 13 - A simple pendulum has a length of 52.0 cm and...Ch. 13 - A seconds pendulum is one that moves through its...Ch. 13 - A clock is constructed so that it keeps perfect...Ch. 13 - A coat hanger of mass m = 0.238 kg oscillates on a...Ch. 13 - The free-fall acceleration on Mars is 3.7 m/s2....Ch. 13 - A simple pendulum is 5.00 in long. (a) What is the...Ch. 13 - The sinusoidal wave shown in Figure P13.41 is...Ch. 13 - An object attached to a spring vibrates with...Ch. 13 - Prob. 43PCh. 13 - The distance between two successive minima of a...Ch. 13 - A harmonic wave is traveling along a rope. It is...Ch. 13 - A bat can detect small objects, such as an insect,...Ch. 13 - Orchestra instruments are commonly tuned to match...Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Workers attach a 25.0-kg mass to one end of a...Ch. 13 - A piano siring of mass per unit length 5.00 103...Ch. 13 - A student taking a quiz finds on a reference sheet...Ch. 13 - Prob. 53PCh. 13 - An astronaut on the Moon wishes to measure the...Ch. 13 - A simple pendulum consists of a ball of mass 5.00...Ch. 13 - A string is 50.0 cm long and has a mass of 3.00 g....Ch. 13 - Tension is maintained in a string as in Figure...Ch. 13 - The elastic limit of a piece of steel wire is 2.70...Ch. 13 - A 2.65-kg power line running between two towers...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - The position of a 0.30-kg object attached to a...Ch. 13 - An object of mass 2.00 kg is oscillating freely on...Ch. 13 - Prob. 64APCh. 13 - A simple pendulum has mass 1.20 kg and length...Ch. 13 - A 0.500-kg block is released from rest and slides...Ch. 13 - A 3.00-kg object is fastened to a light spring,...Ch. 13 - A 5.00-g bullet moving with an initial speed of...Ch. 13 - A large block P executes horizontal simple...Ch. 13 - A spring in a toy gun has a spring constant of...Ch. 13 - A light balloon filled with helium of density...Ch. 13 - An object of mass m is connected to two rubber...Ch. 13 - Assume a hole is drilled through the center of the...Ch. 13 - Figure P13.74 shows a crude model of an insect...Ch. 13 - A 2.00-kg block hangs without vibrating at the end...Ch. 13 - A system consists of a vertical spring with force...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A smaller disk of radius r and mass m is attached rigidly to the face of a second larger disk of radius R and mass M as shown in Figure P15.48. The center of the small disk is located at the edge of the large disk. The large disk is mounted at its center on a frictionless axle. The assembly is rotated through a small angle from its equilibrium position and released. (a) Show that the speed of the center of the small disk as it passes through the equilibrium position is v=2[Rg(1cos)(M/m)+(r/R)2+2]1/2 (b) Show that the period of the motion is v=2[(M/2m)+R2+mr22mgR]1/2 Figure P15.48arrow_forwardA nylon siring has mass 5.50 g and length L = 86.0 cm. The lower end is tied to the floor, and the upper end is tied to a small set of wheels through a slot in a track on which the wheels move (Fig. P18.76). The wheels have a mass that is negligible compared with that of the siring, and they roll without friction on the track so that the upper end of the string is essentially free. Figure P18.76 At equilibrium, the string is vertical and motionless. When it is carrying a small-amplilude wave, you may assume the string is always under uniform tension 1.30 N. (a) Find the speed of transverse waves on the siring, (b) The string's vibration possibilities are a set of standing-wave states, each with a node at the fixed bottom end and an antinode at the free top end. Find the node-antinode distances for each of the three simplest states, (c) Find the frequency of each of these states.arrow_forwardA child works on a project in art class and uses an outline of her hand on a sheet of construction paper to draw a turkey (Fig. P16.36). The teacher pins the turkey to the bulletin board in the front of the classroom by using a thumbtack. The student notices that if she flicks her finger on the end of the turkey, it oscillates back and forth with a frequency of about 1.65 Hz. If the rotational inertia of the paper turkey is 1.25 105 kgm2 and its mass is 0.005 kg, what is the distance between the thumbtack and the center of mass of the turkey? FIGURE P16.36arrow_forward
- Why is the following situation impossible? A worker in a factory pulls a cabinet across the floor using a rope as shown in Figure P12.36a. The rope make an angle = 37.0 with the floor and is tied h1 = 10.0 cm from the bottom of the cabinet. The uniform rectangular cabinet has height = 100 cm and width w = 60.0 cm, and it weighs 400 N. The cabinet slides with constant speed when a force F = 300 N is applied through the rope. The worker tires of walking backward. He fastens the rope to a point on the cabinet h2 = 65.0 cm off the floor and lays the rope over his shoulder so that he can walk forward and pull as shown in Figure P12.36b. In this way, the rope again makes an angle of = 37.0 with the horizontal and again has a tension of 300 N. Using this technique, the worker is able to slide the cabinet over a long distance on the floor without tiring. Figure P12.36 Problems 36 and 44.arrow_forwardA vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forwardA block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forward
- A lightweight spring with spring constant k = 225 N/m is attached to a block of mass m1 = 4.50 kg on a frictionless, horizontal table. The blockspring system is initially in the equilibrium configuration. A second block of mass m2 = 3.00 kg is then pushed against the first block, compressing the spring by x = 15.0 cm as in Figure P16.77A. When the force on the second block is removed, the spring pushes both blocks to the right. The block m2 loses contact with the springblock 1 system when the blocks reach the equilibrium configuration of the spring (Fig. P16.77B). a. What is the subsequent speed of block 2? b. Compare the speed of block 1 when it again passes through the equilibrium position with the speed of block 2 found in part (a). 77. (a) The energy of the system initially is entirely potential energy. E0=U0=12kymax2=12(225N/m)(0.150m)2=2.53J At the equilibrium position, the total energy is the total kinetic energy of both blocks: 12(m1+m2)v2=12(4.50kg+3.00kg)v2=(3.75kg)v2=2.53J Therefore, the speed of each block is v=2.53J3.75kg=0.822m/s (b) Once the second block loses contact, the first block is moving at the speed found in part (a) at the equilibrium position. The energy 01 this spring-block 1 system is conserved, so when it returns to the equilibrium position, it will be traveling at the same speed in the opposite direction, or v=0.822m/s. FIGURE P16.77arrow_forwardThe angular position of a pendulum is represented by the equation = 0.032 0 cos t, where is in radians and = 4.43 rad/s. Determine the period and length of the pendulum.arrow_forwardReview. One end of a light spring with force constant k = 100 N/m is attached to a vertical wall. A light string is tied to the other end of the horizontal spring. As shown in Figure P12.57, the string changes from horizontal to vertical as it passes over a pulley of mass M in the shape of a solid disk of radius R = 2.00 cm. The pulley is free to turn on a fixed, smooth axle. The vertical section of the string supports an object of mass m = 200 g. The string does not slip at its contact with the pulley. The object is pulled downward a small distance and released. (a) What is the angular frequency of oscillation of the object in terms of the mass M? (b) What is the highest possible value of the angular frequency of oscillation of the object? (c) What is the highest possible value of the angular frequency of oscillation of the object if the pulley radius is doubled to R = 4.00 cm? Figure P12.57arrow_forward
- A simple pendulum is made of a 2 m-string and a bob of mass m. At t 0, the pendulum is at its equilibrium position and is given an initial velocity v = 0.2 m/s. The maximum angular speed, O'max, is: O 0.4 rad/s O 0.8 rad/s O0.2 rad/s O 0.05 rad/s O0.1 rad/sarrow_forwardMass m1 is attached to a spring. A person compresses the spring so that when released it oscillates with angular frequency 12 rad/s. The first mass is removed and replaced with another mass m2. (The spring remains the same.) When the spring is compressed and set into motion the new anguar frequency is 3 rad/s. what is the ratio of m2/m1?arrow_forwardAn engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 100 kg. Pendulum 2 has a bob with a mass of 10 kg. Describe how the motion of the pendula will differ if the bobs are both displaced by 12.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY