Introduction to Chemistry
Introduction to Chemistry
4th Edition
ISBN: 9780073523002
Author: Rich Bauer, James Birk Professor Dr., Pamela S. Marks
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 73QP

(a)

Interpretation Introduction

Interpretation:

Concentration of OH , pH and pOH for H3O+=1.0×105 is to be found, and nature of solution is to be determined.

(a)

Expert Solution
Check Mark

Explanation of Solution

Ionic product of water is defined as the product of concentrations of H+ and OH ions present in the water. It is represented as Kw .

Expression for Kw is as follows:

Kw=H3O+OH

Here, Kw is the ionic product of water, H3O+ is the concentration of H3O+ ions and OH is the concentration of OH ions.

Substitute, 1.0×105 for H3O+ and 1.0×1014 for Kw in the above equation.

1.0×1014=1.0×105OHOH=1.0×10141.0×105OH=1.0×109

pH of a solution gives the concentration of hydrogen ions in that solution. Range of pH values is from 0 to 14 . Solutions having pH values less than 7 are acidic, those having greater than 7 are basic. Solutions with pH=7 are neutral. pOH of a solution gives the concentration of OH ions in that solution.

pOH can be found using the concentration of OH as follows:

pOH=logOH

Substitute, 1.0×109 for OH in the above equation.

pOH=log1.0×109pOH=9

The relation between pH and pOH is as follows:

pH+pOH=14

Substitute, 9 for pOH in the above equation.

pH+9=14pH=149pH=5

As the pH is less than 7 , so the solution is acidic in nature.

Therefore, OH=1.0×109 , pOH=9 and pH=5 for the given value of H3O+ , and the nature of the solution is acidic.

(b)

Interpretation Introduction

Interpretation:

Concentration of H3O+ , pH and pOH for OH=1.0×104 is to be found, and nature of solution is to be determined.

(b)

Expert Solution
Check Mark

Explanation of Solution

Ionic product of water is defined as the product of concentrations of H+ and OH ions present in the water. It is represented as Kw .

Expression for Kw is as follows:

Kw=H3O+OH

Here, Kw is the ionic product of water, H3O+ is the concentration of H3O+ ions and OH is the concentration of OH ions.

Substitute, 1.0×104 for OH and 1.0×1014 for Kw in the above equation.

1.0×1014=H3O+1.0×104H3O+=1.0×10141.0×104H3O+=1.0×1010

pH of a solution gives the concentration of hydrogen ions in that solution. Range of pH values is from 0 to 14 . Solutions having pH values less than 7 are acidic, those having greater than 7 are basic. Solutions with pH=7 are neutral. pOH of a solution gives the concentration of OH ions in that solution.

pOH can be found using concentration of OH as follows:

pOH=logOH

Substitute, 1.0×104 for OH in the above equation.

pOH=log1.0×104pOH=4

The relation between pH and pOH is as follows:

pH+pOH=14

Substitute, 4 for pOH in the above equation.

pH+4=14pH=144pH=10

As the pH is more than 7 , so the solution is basic in nature.

Therefore, H3O+=1.0×1010 , pOH=4 and pH=10 for the given value of OH , and the nature of the solution is basic.

(c)

Interpretation Introduction

Interpretation:

Concentration of H3O+ and OH and pH for pOH=8 is to be found, and nature of solution is to be determined.

(c)

Expert Solution
Check Mark

Explanation of Solution

pH of a solution gives the concentration of hydrogen ions in that solution. Range of pH values is from 0 to 14 . Solutions having pH values less than 7 are acidic, those having greater than 7 are basic. Solutions with pH=7 are neutral. pOH of a solution gives the concentration of OH ions in that solution.

Concentration of OH can be found using pOH as follows:

pOH=logOH

Substitute, 8 for pOH in the above equation.

8.00=logOH

Taking antilog on both sides and solving above equation, OH=1.0×108 .

The relation between pH and pOH is as follows:

pH+pOH=14

Substitute, 8 for pOH in the above equation.

pH+8=14pH=148pH=6

As the pH is less than 7 , so the solution is acidic in nature.

Concentration of H3O+ can be found using pH as follows:

pH=logH3O+

Substitute, 6 for pH in the above equation

6=logH3O+

Taking antilog on both sides and solving above equation, H3O+=1.0×106 .

Therefore, H3O+=1.0×106 , OH=1.0×108 and pH=6 for the given value of pOH , and the nature of the solution is acidic.

(d)

Interpretation Introduction

Interpretation:

Concentration of H3O+ and OH and pOH for pH=8.54 is to be found and, nature of solution is to be determined.

(d)

Expert Solution
Check Mark

Explanation of Solution

pH of a solution gives the concentration of hydrogen ions in that solution. Range of pH values is from 0 to 14 . Solutions having pH values less than 7 are acidic, those having greater than 7 are basic. Solutions with pH=7 are neutral. pOH of a solution gives the concentration of OH ions in that solution.

Concentration of H3O+ can be found using pH as follows:

pH=logH3O+

Substitute, 8.54 for pH in the above equation.

8.54=logH3O+

Taking antilog on both sides and solving above equation, H3O+=3.5×108 .

The relation between pH and pOH is as follows:

pH+pOH=14

Substitute, 8.54 for pH in the above equation.

8.54+pOH=14pOH=148.54pOH=5.46

Concentration of OH can be found using pOH as follows:

pOH=logOH

Substitute, 5.46 for pOH in the above equation.

5.46=logOH

Taking antilog on both sides and solving above equation, OH=2.9×105 .

As the pH is more than 7 , so the solution is basic in nature.

Therefore, H3O+=3.5×108 , OH=2.9×105 and pOH=5.46 for the given value of pH , and the nature of the solution is basic.

(e)

Interpretation Introduction

Interpretation:

Concentration of H3O+ , pH and pOH for OH=9.0×1010 is to be found and, nature of solution is to be determined.

(e)

Expert Solution
Check Mark

Explanation of Solution

Ionic product of water is defined as the product of concentration of H+ and OH ions present in the water. It is represented as Kw .

Expression for Kw is as follows:

Kw=H3O+OH

Here, Kw is the ionic product of water, H3O+ is the concentration of H3O+ ions and OH is the concentration of OH ions.

Substitute, 9.0×1010 for OH and 1.0×1014 for Kw in the above equation.

1.0×1014=H3O+9.0×1010H3O+=1.0×10149.0×1010H3O+=1.1×105

pH of a solution gives the concentration of hydrogen ions in that solution. Range of pH values is from 0 to 14 . Solutions having pH values less than 7 are acidic, those having greater than 7 are basic. Solutions with pH=7 are neutral. pOH of a solution gives the concentration of OH ions in that solution.

pOH can be found using concentration of OH as follows:

pOH=logOH

Substitute, 9.0×1010 for OH in the above equation.

pOH=log9.0×1010pOH=9.05

The relation between pH and pOH is as follows:

pH+pOH=14

Substitute, 9.05 for pOH in the above equation.

pH+9.05=14pH=149.05pH=4.95

As the pH is less than 7 , so the solution is acidic in nature.

Therefore, H3O+=1.1×105 , pOH=9.05 and pH=4.95 for the given value of OH , and the nature of the solution is acidic.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Matter is neither created nor destroyed in a chemical reaction. Thus, the mass of the products of a chemical reaction must be equal to the mass of the starting materials. Formally, this concept is called the law of conservation of mass. A sample of sodium reacts completely with 0.426 kg k g of chlorine, forming 702 g g of sodium chloride. What mass of sodium reacted?
What chemical test(s) could you use to distinguish solid barium chloride from solid barium sulfate?
the ones that are numbered is part A and the ones that are not numbered are part B.

Chapter 13 Solutions

Introduction to Chemistry

Ch. 13 - Prob. 5PPCh. 13 - Prob. 6PPCh. 13 - Prob. 7PPCh. 13 - Prob. 8PPCh. 13 - Prob. 9PPCh. 13 - Prob. 10PPCh. 13 - Prob. 11PPCh. 13 - Prob. 12PPCh. 13 - Prob. 13PPCh. 13 - Prob. 14PPCh. 13 - Prob. 15PPCh. 13 - Prob. 1QPCh. 13 - Prob. 2QPCh. 13 - Prob. 3QPCh. 13 - Prob. 4QPCh. 13 - Prob. 5QPCh. 13 - Prob. 6QPCh. 13 - Prob. 7QPCh. 13 - Prob. 8QPCh. 13 - Prob. 9QPCh. 13 - Prob. 10QPCh. 13 - Prob. 11QPCh. 13 - Prob. 12QPCh. 13 - Prob. 13QPCh. 13 - Prob. 14QPCh. 13 - Prob. 15QPCh. 13 - Prob. 16QPCh. 13 - Prob. 17QPCh. 13 - Prob. 18QPCh. 13 - Prob. 19QPCh. 13 - Prob. 20QPCh. 13 - Prob. 21QPCh. 13 - Prob. 22QPCh. 13 - Prob. 23QPCh. 13 - Prob. 24QPCh. 13 - Prob. 25QPCh. 13 - Prob. 26QPCh. 13 - How do strong acids and bases differ from weak...Ch. 13 - Prob. 28QPCh. 13 - Prob. 29QPCh. 13 - Prob. 30QPCh. 13 - Prob. 31QPCh. 13 - Prob. 32QPCh. 13 - Prob. 33QPCh. 13 - Prob. 34QPCh. 13 - Prob. 35QPCh. 13 - Prob. 36QPCh. 13 - Prob. 37QPCh. 13 - Prob. 38QPCh. 13 - Sodium fluoride, NaF, and sodium acetate,...Ch. 13 - Prob. 40QPCh. 13 - Prob. 41QPCh. 13 - Prob. 42QPCh. 13 - Prob. 43QPCh. 13 - Prob. 44QPCh. 13 - Prob. 45QPCh. 13 - Prob. 46QPCh. 13 - Prob. 47QPCh. 13 - Prob. 48QPCh. 13 - Prob. 49QPCh. 13 - Prob. 50QPCh. 13 - Prob. 51QPCh. 13 - Prob. 52QPCh. 13 - Prob. 53QPCh. 13 - Prob. 54QPCh. 13 - Prob. 55QPCh. 13 - Prob. 56QPCh. 13 - Prob. 57QPCh. 13 - Prob. 58QPCh. 13 - Prob. 59QPCh. 13 - Prob. 60QPCh. 13 - Prob. 61QPCh. 13 - Prob. 62QPCh. 13 - Prob. 63QPCh. 13 - Prob. 64QPCh. 13 - Prob. 65QPCh. 13 - What is the pH range for acidic solutions? For...Ch. 13 - Prob. 67QPCh. 13 - Prob. 68QPCh. 13 - Prob. 69QPCh. 13 - Prob. 70QPCh. 13 - Prob. 71QPCh. 13 - Prob. 72QPCh. 13 - Prob. 73QPCh. 13 - Prob. 74QPCh. 13 - Prob. 75QPCh. 13 - Prob. 76QPCh. 13 - Prob. 77QPCh. 13 - Prob. 78QPCh. 13 - Prob. 79QPCh. 13 - Prob. 80QPCh. 13 - Prob. 81QPCh. 13 - Prob. 82QPCh. 13 - Prob. 83QPCh. 13 - Prob. 84QPCh. 13 - Prob. 85QPCh. 13 - Prob. 86QPCh. 13 - Prob. 87QPCh. 13 - Prob. 88QPCh. 13 - Prob. 89QPCh. 13 - Prob. 90QPCh. 13 - Prob. 91QPCh. 13 - Prob. 92QPCh. 13 - Prob. 93QPCh. 13 - Prob. 94QPCh. 13 - Prob. 95QPCh. 13 - Prob. 96QPCh. 13 - Prob. 97QPCh. 13 - Prob. 98QPCh. 13 - Prob. 99QPCh. 13 - Prob. 100QPCh. 13 - Prob. 101QPCh. 13 - What would you expect to observe if you ran a...Ch. 13 - Prob. 103QPCh. 13 - Prob. 104QPCh. 13 - Prob. 105QPCh. 13 - Prob. 106QPCh. 13 - Prob. 107QPCh. 13 - Prob. 108QPCh. 13 - Prob. 109QPCh. 13 - Prob. 110QPCh. 13 - Prob. 111QPCh. 13 - Prob. 112QPCh. 13 - Prob. 113QPCh. 13 - Prob. 114QPCh. 13 - Prob. 115QPCh. 13 - Prob. 116QPCh. 13 - Prob. 117QPCh. 13 - Prob. 118QPCh. 13 - Prob. 119QPCh. 13 - Prob. 120QPCh. 13 - Prob. 121QPCh. 13 - Prob. 122QPCh. 13 - Prob. 123QPCh. 13 - Prob. 124QPCh. 13 - Prob. 125QPCh. 13 - Prob. 126QPCh. 13 - Prob. 127QPCh. 13 - Prob. 128QPCh. 13 - Prob. 129QPCh. 13 - What is the pH of a mixture that contains...Ch. 13 - Prob. 131QPCh. 13 - Prob. 132QPCh. 13 - Prob. 133QPCh. 13 - Which of the following weak acids has the anion...Ch. 13 - Prob. 135QPCh. 13 - Prob. 136QPCh. 13 - Prob. 137QPCh. 13 - Prob. 138QPCh. 13 - Prob. 139QPCh. 13 - Prob. 140QPCh. 13 - Prob. 141QPCh. 13 - Prob. 142QPCh. 13 - Prob. 143QPCh. 13 - Prob. 144QPCh. 13 - Prob. 145QPCh. 13 - Prob. 146QPCh. 13 - When 10.0mLofa0.10MHCl solution is diluted to...Ch. 13 - Consider a buffer solution prepared by adding...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Text book image
    World of Chemistry, 3rd edition
    Chemistry
    ISBN:9781133109655
    Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
    Publisher:Brooks / Cole / Cengage Learning
    Text book image
    Chemistry In Focus
    Chemistry
    ISBN:9781337399692
    Author:Tro, Nivaldo J.
    Publisher:Cengage Learning,
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY