Concept explainers
(a)
To determine: The Earth’s orbital speed at aphelion.
(a)
Answer to Problem 69AP
Answer: The Earth’s orbital speed at aphelion is
Explanation of Solution
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
By the conservation of
The angular momentum at perihelion is given as,
The angular momentum at aphelion is given as,
Substitute
Substitute
Conclusion:
Therefore, the Earth’s orbital speed at aphelion is
(b)
To determine: The kinetic and potential energy of the Earth-Sun system at perihelion.
(b)
Answer to Problem 69AP
Answer: The kinetic of the Earth-Sun system at perihelion is
Explanation of Solution
Section 1;
To determine: The kinetic energy of the Earth-Sun system at perihelion.
Answer: The kinetic energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the kinetic energy of the Earth-Sun system at perihelion is,
Substitute
Conclusion:
Therefore, the kinetic of the Earth-Sun system at perihelion is
Section 2;
To determine: The potential energy of the Earth-Sun system at perihelion.
Answer: The potential energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the potential energy of the Earth-Sun system at perihelion is,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at perihelion is
(c)
To determine: The kinetic and potential energy of the Earth-Sun system at aphelion.
(c)
Answer to Problem 69AP
Answer: The kinetic of the Earth-Sun system at aphelion is
Explanation of Solution
Section 1;
To determine: The kinetic energy of the Earth-Sun system at aphelion.
Answer: The kinetic energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the kinetic energy of the Earth-Sun system at aphelion is,
Substitute
Conclusion:
Therefore, the kinetic of the Earth-Sun system at aphelion is
Section 2;
To determine: The potential energy of the Earth-Sun system at aphelion.
Answer: The potential energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the potential energy of the Earth-Sun system at aphelion is,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at aphelion is
(d)
To determine: Whether the total energy of the Earth-Sun system constant.
(d)
Answer to Problem 69AP
Answer: Yes, the total energy of the Earth-Sun system is remains constant.
Explanation of Solution
Section 1;
To determine: The total energy of the Earth-Sun system at aphelion.
Answer: The kinetic energy of the Earth-Sun system at aphelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the total energy of the Earth-Sun system at aphelion is,
Substitute
Section 2;
To determine: The total energy of the Earth-Sun system at perihelion.
Answer: The kinetic energy of the Earth-Sun system at perihelion is
Explanation:
Given information:
The maximum distance from the Earth to the Sun is
Formula to calculate the total energy of the Earth-Sun system at perihelion is,
Substitute
Mathematically proved, the sum of kinetic energy and potential energy of the Earth–Sun system at perihelion is identical to the sum of kinetic energy and potential energy of the Earth–Sun system at aphelion. So the total energy of the Earth-Sun system is constant.
Conclusion:
Therefore, yes, the total energy of the Earth-Sun system remains constant.
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- I need correct answer not chatgptarrow_forwardWhat is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forward
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning