College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 5P
A biologist hangs a sample of mass 0.725 kg on a pair of identical, vertical springs in parallel and slowly lowers the sample to equilibrium, stretching the springs by 0.200 m. Calculate the value of the spring constant of one of the springs.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 13 Solutions
College Physics:
Ch. 13.1 - A block on the end of a horizontal spring is...Ch. 13.1 - For a simple harmonic oscillator, which of the...Ch. 13.2 - When an object moving in simple harmonic motion is...Ch. 13.3 - An object of mass m is attached to a horizontal...Ch. 13.3 - Prob. 13.5QQCh. 13.4 - If the amplitude of a system moving in simple...Ch. 13.5 - A simple pendulum is suspended from the ceiling of...Ch. 13.5 - A pendulum dork depends on the period of a...Ch. 13.5 - The period of a simple pendulum is measured to be...Ch. 13 - An objectspring system undergoes simple harmonic...
Ch. 13 - If an objectspring system is hung vertically and...Ch. 13 - The spring in Figure CQ13.3 is stretched from its...Ch. 13 - If the spring constant shown in Figure CQ13.3 is...Ch. 13 - If the spring shown in Figure CQ13.3 is com...Ch. 13 - If a spring is cut in half, what happens to its...Ch. 13 - A pendulum bob is made from a sphere filled with...Ch. 13 - A block connected to a horizontal spring is in...Ch. 13 - (a) Is a bouncing ball an example of simple...Ch. 13 - If a grandfather clock were running slow, how...Ch. 13 - What happens to the speed of a wave on a string...Ch. 13 - Prob. 12CQCh. 13 - Waves are traveling on a uniform string under...Ch. 13 - Identify each of the following waves as either...Ch. 13 - A block, of mass m = 0.60 kg attached to a spring...Ch. 13 - A spring oriented vertically is attached to a hard...Ch. 13 - The force constant of a spring is 137 N/m. Find...Ch. 13 - A spring is hung from a ceiling, and an object...Ch. 13 - A biologist hangs a sample of mass 0.725 kg on a...Ch. 13 - An archer must exert a force of 375 N on the...Ch. 13 - A spring 1.50 m long with force constant 475 N/m...Ch. 13 - A block of mass m = 2.00 kg is attached to a...Ch. 13 - A slingshot consists of a light leather cup...Ch. 13 - An archer pulls her bowstring back 0.400 m by...Ch. 13 - A student pushes the 1.50-kg block in Figure...Ch. 13 - An automobile having a mass of 1.00 103 kg is...Ch. 13 - A 10.0-g bullet is fired into, and embeds itself...Ch. 13 - An object-spring system moving with simple...Ch. 13 - A horizontal block-spring system with the block on...Ch. 13 - A 0.250-kg block attached to a light spring...Ch. 13 - A block-spring system consists of a spring with...Ch. 13 - A 0.40-kg object connected to a light spring with...Ch. 13 - At an outdoor market, a bunch of bananas attached...Ch. 13 - A student stretches a spring, attaches a 1.00-kg...Ch. 13 - A horizontal spring attached to a wall has a force...Ch. 13 - An object moves uniformly around a circular path...Ch. 13 - The wheel in the simplified engine of Figure...Ch. 13 - The period of motion of an object-spring system is...Ch. 13 - A vertical spring stretches 3.9 cm when a 10.-g...Ch. 13 - When four people with a combined mass of 320 kg...Ch. 13 - The position of an object connected to a spring...Ch. 13 - A harmonic oscillator is described by the function...Ch. 13 - A 326-g object is attached to a spring and...Ch. 13 - An object executes simple harmonic motion with an...Ch. 13 - A 2.00-kg object on a frictionless horizontal...Ch. 13 - A spring of negligible mass stretches 3.00 cm from...Ch. 13 - Given that x = A cos (t) is a sinusoidal function...Ch. 13 - A man enters a tall tower, needing to know its...Ch. 13 - A simple pendulum has a length of 52.0 cm and...Ch. 13 - A seconds pendulum is one that moves through its...Ch. 13 - A clock is constructed so that it keeps perfect...Ch. 13 - A coat hanger of mass m = 0.238 kg oscillates on a...Ch. 13 - The free-fall acceleration on Mars is 3.7 m/s2....Ch. 13 - A simple pendulum is 5.00 in long. (a) What is the...Ch. 13 - The sinusoidal wave shown in Figure P13.41 is...Ch. 13 - An object attached to a spring vibrates with...Ch. 13 - Prob. 43PCh. 13 - The distance between two successive minima of a...Ch. 13 - A harmonic wave is traveling along a rope. It is...Ch. 13 - A bat can detect small objects, such as an insect,...Ch. 13 - Orchestra instruments are commonly tuned to match...Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Workers attach a 25.0-kg mass to one end of a...Ch. 13 - A piano siring of mass per unit length 5.00 103...Ch. 13 - A student taking a quiz finds on a reference sheet...Ch. 13 - Prob. 53PCh. 13 - An astronaut on the Moon wishes to measure the...Ch. 13 - A simple pendulum consists of a ball of mass 5.00...Ch. 13 - A string is 50.0 cm long and has a mass of 3.00 g....Ch. 13 - Tension is maintained in a string as in Figure...Ch. 13 - The elastic limit of a piece of steel wire is 2.70...Ch. 13 - A 2.65-kg power line running between two towers...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - The position of a 0.30-kg object attached to a...Ch. 13 - An object of mass 2.00 kg is oscillating freely on...Ch. 13 - Prob. 64APCh. 13 - A simple pendulum has mass 1.20 kg and length...Ch. 13 - A 0.500-kg block is released from rest and slides...Ch. 13 - A 3.00-kg object is fastened to a light spring,...Ch. 13 - A 5.00-g bullet moving with an initial speed of...Ch. 13 - A large block P executes horizontal simple...Ch. 13 - A spring in a toy gun has a spring constant of...Ch. 13 - A light balloon filled with helium of density...Ch. 13 - An object of mass m is connected to two rubber...Ch. 13 - Assume a hole is drilled through the center of the...Ch. 13 - Figure P13.74 shows a crude model of an insect...Ch. 13 - A 2.00-kg block hangs without vibrating at the end...Ch. 13 - A system consists of a vertical spring with force...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forwardA spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s2, what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?arrow_forwardTwo masses m1 = 100 g and m2 = 200 g slide freely in a horizontal frictionless track and are connected by a spring whose force constant is k = 0.5 N/m. Find the frequency of oscillatory motion for this system.arrow_forward
- A mass is placed on a frictionless, horizontal table. A spring (k=100N/m) , which can be stretched or compressed, is placed on the table. A 5.00-kg mass is attached to one end of the spring, the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x=4.0 cm and releases it from rest. The mass oscillates in SHM. (a) Determine the equations of motion. (b) Find the position, velocity, and acceleration of the mass at time t=3.00 s.arrow_forwardA small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small angular displacements and three lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m, total time intervals for 50 oscillations of 99.8 s, 86.6 s, and 71.1s are measured with a stopwatch. (a) Determine the period of motion for each length. (b) Determine the mean value of g obtained from these three independent measurements and compare it with the accepted value. (c) Plot T2 versus L and obtain a value for g from the slope of your best-fit straight-line graph. (d) Compare the value found in part (c) with that obtained in part (b).arrow_forwardA horizontal spring attached to a wall has a force constant of 850 N/m. A block of mass 1.00 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in Figure 5.22. The initial goal of this problem is to find the velocity at the equilibrium point after the block is released. (a) What objects constitute the system, and through what forces do they interact? (b) What are the two points of interest? (c) Find the energy stored in the spring when the mass is stretched 6.00 cm from equilibrium and again when the mass passes through equilibrium after being released from rest. (d) Write the conservation of energy equation for this situation and solve it for the speed of the mass as it passes equilibrium. Substitute to obtain a numerical value. (e) What is the speed at the halfway point? Why isnt it half the speed at equilibrium?arrow_forward
- An object of mass m on a spring of stiffness k oscillates with an amplitude A about its equilibrium position. Suppose that m = 300 g, k = 10 N/m, and A = 10 cm. (a) Find the total energy. (b) Find the mechanical frequency of vibration of the mass. (c) Calculate the change in amplitude when the system loses one quantum of energy.arrow_forwardIn an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardOne type of toy car contains a spring that is compressed as the wheels are rolled backward along a surface. The spring remains compressed until the wheels are freed and the car is allowed to roll forward. Jose learns that if he rolls the car backward for a greater distance (up to a certain point), the car will go faster when he releases it. The spring compresses 1.00 cm for every 10.0 cm the car is rolled backward. a. Assuming the spring constant is 150.0 N/m, what is the elastic potential energy stored in the spring when Jose rolls the car backward 20.0 cm? b. What is the elastic potential energy stored in the spring when he rolls the car backward 30.0 cm? c. Explain the correlation between the results for parts (a) and (b) and Joses observations of different speeds.arrow_forward
- Figure P13.74 shows a crude model of an insect wing. The mass m represents the entire mass of the wing, which pivots about the fulcrum F. The spring represents the surrounding connective tissue. Motion of the wing corresponds to vibration of the spring. Suppose the mass of the wing is 0.30 g and the effective spring constant of the tissue is 4.7 104 N/m. If the mass m moves up and down a distance of 2.0 mm from its position of equilibrium, what is the maximum speed of the outer tip of the wing? Figure P13.74arrow_forwardUse the data in Table P16.59 for a block of mass m = 0.250 kg and assume friction is negligible. a. Write an expression for the force FH exerted by the spring on the block. b. Sketch FH versus t.arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY