![Electric Circuits, Student Value Edition Format: Unbound (saleable)](https://www.bartleby.com/isbn_cover_images/9780134747170/9780134747170_largeCoverImage.gif)
Electric Circuits, Student Value Edition Format: Unbound (saleable)
11th Edition
ISBN: 9780134747170
Author: NILSSON, James W.^riedel, Susan
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 56P
(a)
To determine
Find the numerical expression for the transfer function.
(b)
To determine
The numerical value of pole and zero of
(c)
To determine
Find the unit step response of the given circuit.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Determine the transformer's active power losses and primary voltage (Figure 1). The
busbar's voltage at the transformer's secondary side is 20.5 kV. Load P is 6 MW, and the
power factor is 0.95ind.
Select a short-circuit withstanding (1-second short circuit length) cable for Feeder 1 in
Figure 1. Values for cables are given in Table 1. The voltage of the supplying network is
now 115 kV and the short-circuit power of the supplying network is 2000 MVA.
Table 1. Technical information of 3-phase cables (10 kV and 20 kV)
Product's name
EA-number
Structural information
20KV
20KV
20 KV
0624250
0624252
0624253
0624254
AHKAMK-W AHKAMKW AHKAMKWAHKAMKW AHKAMKW AHKAMKW AHKAMKW
3x50Al+35Cu 3x95 Al. 35Cu 3x120Al. 35Cu 3x150Al+35Cu 3x185Al+35Cu 3x240A1+70 Cu 3x300Al+70Cu
20kV
20kV 20 kV (8) 20KV
0624255
0624257
0624256
Diameter of conductor
Diameter of out-most circle
Cable's outer diameter
Mass
Delivery information
Standard length
Delivery reel
mm
8.0
11.3
12.7
14.1
15.7
18.1
20.3
mm
28
32
34
35
37
40
43
mm
64
71
74
76
80
89
94
aluminium
kg/km
510
910
1100
1350
1650
2200
2700
сорраг
kg/km
305
305
305
305
305
600
600
cable
kg/km
2350
3100
3450
3800
4300
5500
6250
E
500
500
500
500
500
500
500…
A three-phase 20 kV medium-voltage line is 10 km. Resistance is 0.252 2/km and reactance
is 0.128 92/km (inductive). Voltage at the beginning of line is 21.0 kV. At the end of the line
is loading P = 2.5 MW with power factor 0.92ind. Draw 1-phase equivalent diagram and
calculate line voltage at the end the of line, active and reactive power at the beginning of the
line and power losses of the line.
Chapter 13 Solutions
Electric Circuits, Student Value Edition Format: Unbound (saleable)
Ch. 13.2 - The parallel circuit in Example 13.1 is placed in...Ch. 13.3 - Prob. 2APCh. 13.3 - The energy stored in the circuit shown is zero at...Ch. 13.3 - The dc current and dc voltage sources are applied...Ch. 13.3 - Prob. 6APCh. 13.3 - Using the results from Example 13.7 for the...Ch. 13.3 - The energy stored in the circuit shown is zero at...Ch. 13.4 -
Derive the numerical expression for the transfer...Ch. 13.5 - Find (a) the unit step and (b) the unit impulse...Ch. 13.5 - The unit impulse response of a circuit is
υo(t) =...
Ch. 13.7 - The current source in the circuit shown is...Ch. 13.7 - For the circuit shown, find the steady-state...Ch. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - An 2 kΩ resistor, a 6.25 H inductor, and a 250 nF...Ch. 13 - A 250 Ω resistor is in series with an 80 mH...Ch. 13 - Find the poles and zeros of the impedance seen...Ch. 13 - Find the poles and zeros of the impedance seen...Ch. 13 - Prob. 9PCh. 13 - The switch in the circuit in Fig. P13.10 has been...Ch. 13 - Find Vo and υo in the circuit shown in Fig. P13.11...Ch. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Find the time-domain expression for the current in...Ch. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - The make-before-break switch in the circuit in...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - Prob. 21PCh. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - Prob. 23PCh. 13 - Prob. 24PCh. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - There is no energy stored in the capacitance in...Ch. 13 - The switch in the circuit seen in Fig. P13.32 has...Ch. 13 - Prob. 33PCh. 13 - Prob. 35PCh. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - The op amp in the circuit shown in Fig. P13.46 is...Ch. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Find the transfer function H(s) − Vo/Vi for the...Ch. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - The operational amplifier in the circuit in Fig....Ch. 13 - Prob. 56PCh. 13 - The operational amplifier in the circuit in Fig....Ch. 13 - Find the transfer function Io/Ig as a function of...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - Prob. 69PCh. 13 - The input voltage in the circuit seen in Fig....Ch. 13 - Find the impulse response of the circuit shown in...Ch. 13 - Assume the voltage impulse response of a circuit...Ch. 13 - Prob. 75PCh. 13 - Prob. 76PCh. 13 - Prob. 77PCh. 13 - The transfer function for a linear time-invariant...Ch. 13 - The transfer function for a linear time-invariant...Ch. 13 - Prob. 80PCh. 13 - The op amp in the circuit seen in Fig. P13.81 is...Ch. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 89PCh. 13 - Prob. 90PCh. 13 - The switch in the circuit in Fig P13.91 has been...Ch. 13 - The parallel combination of R2 and C2 in the...Ch. 13 - Show that if R1C1 = R2C2 in the circuit shown in...
Knowledge Booster
Similar questions
- A three-phase 20 kV medium-voltage line is 10 km. Resistance is 0.365 2/km and reactance is 0.363 2/km (inductive). Voltage at the beginning of line is 20.5 kV. At the end of the line is loading P= 800 kW with power factor 0.95ind. Draw 1-phase equivalent diagram and calculate load current, line voltage at the end the of line, voltage drop and power losses of the line.arrow_forward6. Answer the following questions. Take help from ChatGPT to answer these questions (if you need). Write the answers briefly using your own words with no more than two sentences, and make sure you check whether ChatGPT is giving you the appropriate answers in our context. A) What is a model in our context? B) What is an LTI system? C) What are the three forms of model we have used in the class so far to represent an LTI system? Among the above three forms, which forms can still be used to represent a nonlinear system?arrow_forward5. Consider the following block diagram of a system in the Figure 4. Y₁(s) G₁ G2. R(s) C(s) Y₂(s) G3 G4 Figure 4 The models of the blocks G1, G2, G3 and G4 are represented by a differential equation, transfer function, state-space form, and impulse response as the followings. dy1 G₁: +2y₁ = 3r(t) dt 1 G2: G₂(s) = S+3 G3: x=2x+r, y2=3x-r G4: h(t)=8(t) + et 1(t) Find the simplified expression of the overall transfer function of the system i.e., G(s) = Note for G3 block, you may need to use the formula H(s) = C (sI - A)-¹ B+ D. C(s) R(s)arrow_forward
- 4. Simplify the block diagram in Figure 3 and find the closed-loop transfer function G(s) = C(s) R(s) G₁ R(s) Figure 3 C(s) G2 H₁ H₂arrow_forward1. Consider a system defined by the following state-space equations. -5 2 N-MAN-G = 3 -1 y = [12] Find the transfer function H(s) = x1 x2. Y(s) U(s)' + 5arrow_forward3. Simplify the block diagram in Figure 2 and find the closed-loop transfer function G(s) = C(s) R(s)' G₁ C(s) R(s) G2 G3 G4 Figure 2arrow_forward
- Rigid network supplies Feeder 1 through 110/21 kV transformer (Figure 1). Short circuit power of the supplying network is 5000 MVA and voltage is 110 kV. Determine 3-phase short circuit current for the point A. Draw 1-phase equivalent diagram. How big is the current if the 3-phase short circuit occurs in the Busbar? 110/21 kV Busbar Supplying network S = 16MVA 4-10% Figure 1. Feeder 1: 1-5km - r = 0.337 2/km x 0.361 2/km Aarrow_forwardRigid network supplies Feeder 1 through 110/21 kV transformer (Figure 1). Short circuit power of the supplying network is 3000 MVA and voltage is 110 kV. Length of feeder 1 is 5 km. Determine 3-phase short circuit current for the point A. Draw 1-phase equivalent diagram. 110/21 kV Busbar Supplying network S = 16MVA 4-10% Feeder 1: Figure 1. - 1 = 5km r = 0.337 2/km x = 0.361 2/km Aarrow_forwardhelp me to solve this question in detail. thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,