Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 55P
To determine

The diameter of bubble as its reaches the surface.

Expert Solution & Answer
Check Mark

Answer to Problem 55P

The diameter is 2.1mm.

Explanation of Solution

Depth of lake is 80.0m, temperature at the bottom of lake is 4°C, water temperature at the surface is 18°C, and the initial diameter of bubble is 1.00mm.

The number of moles will be same for at any point.

Write the ideal gas law in case of bubble.

niR=nfR (I)

Here, ni is the initial number of moles, nf is the final number of moles, and R is the universal gas constant.

Write the equation for niR in terms of pressure, temperature, and the volume.

niR=PiViTi (II)

Here, Pi is the pressure at bottom, Vi is the volume at bottom, and Ti is the temperature at the bottom.

Write the equation for nfR in terms of pressure, temperature, and the volume.

nfR=PfVfTf (III)

Here, Pf is the pressure at top, Vf is the volume at top, and Tf is the temperature at the top.

Rewrite equation (I) by substituting equations (II) and (III).

PiViTi=PfVfTf (IV)

Write the equation for Pi in terms of Pf.

Pi=Pf+ρgh (V)

Here, ρ is the density of water, g is the gravitational acceleration, and h is the depth of lake.

Write the equation for Vf.

Vf=16πdf2 (VI)

Here, df is the diameter of bubble at the top.

Write the equation for Vi.

Vi=16πdi2 (VII)

Here, di is the diameter of bubble at the bottom.

Rewrite equation (IV) by substituting equations (V), (VI), and (VII).

(Pf+ρgh)(16πdi2)Ti=Pf(16πdf2)Tf

Rewrite the above relation in terms of df.

df=di((Pf+ρgd)TfPfTi)1/3

Conclusion:

Substitute 1.00mm for di, 1.0atm for Pf, 1.0×103kg/m3 for ρ, 9.80m/s2 for g, 80.0m for h, 18°C for Tf, and 4°C for Ti in the above equation to find df.

df=(1.00mm(103m1mm))((1.0atm(1.013×105Pa/atm1.0atm)+(1.0×103kg/m3)(9.80m/s2)(80.0m))(18°C)(273.15K+18K18°C)1.0atm(1.013×105Pa/atm1.0atm)(4°C)(273.15K+4K4°C))1/3=(1.00mm(103m1mm))(9.261)1/3=2.1×103m(1mm103m)=2.1mm

Therefore, the diameter is 2.1mm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.
A ray of light from an object you want to look at strikes a mirror so that the light ray makes a 32 degree angle relative to the normal line (a line perpendicular to the surface of the mirror at the point where the ray strikes the mirror). If you want to see the object in the mirror, what angle does your line of sight need to make relative to the normal line? Give your answer as the number of degrees.
Suppose you have a converging lens with a focal length of 65 cm. You hold this lens 120 cm away from a candle. How far behind the lens should you place a notecard if you want to form a clear image of the candle, on the card? Give your answer as the number of centimeters.

Chapter 13 Solutions

Physics

Ch. 13.6 - Prob. 13.7PPCh. 13.7 - Prob. 13.8PPCh. 13.8 - Prob. 13.9PPCh. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 16CQCh. 13 - Prob. 17CQCh. 13 - Prob. 18CQCh. 13 - Prob. 19CQCh. 13 - Prob. 20CQCh. 13 - Prob. 1MCQCh. 13 - Prob. 2MCQCh. 13 - Prob. 3MCQCh. 13 - Prob. 4MCQCh. 13 - Prob. 5MCQCh. 13 - Prob. 6MCQCh. 13 - Prob. 7MCQCh. 13 - Prob. 8MCQCh. 13 - Prob. 9MCQCh. 13 - Prob. 10MCQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - Prob. 21PCh. 13 - 22. A copper washer is to be fit in place over a...Ch. 13 - 23. Repeat Problem 22, but now the copper washer...Ch. 13 - Prob. 24PCh. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 63PCh. 13 - Prob. 64PCh. 13 - Prob. 65PCh. 13 - Prob. 66PCh. 13 - Prob. 67PCh. 13 - Prob. 68PCh. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Prob. 71PCh. 13 - Prob. 72PCh. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - Prob. 75PCh. 13 - Prob. 76PCh. 13 - Prob. 77PCh. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - Prob. 90PCh. 13 - Prob. 91PCh. 13 - Prob. 92PCh. 13 - Prob. 93PCh. 13 - Prob. 94PCh. 13 - Prob. 95PCh. 13 - Prob. 96PCh. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102PCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106PCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 111PCh. 13 - Prob. 112PCh. 13 - 113. A long, narrow steel rod of length 2.5000 m...Ch. 13 - Prob. 114PCh. 13 - Prob. 115PCh. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Prob. 120P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY