
Concept explainers
(a)
The escape velocity for an object on Earth.
(a)

Answer to Problem 112P
The escape velocity is
Explanation of Solution
Write the expression for conservation of energy
Here,
Write the expression for kinetic energy of a particle
Here,
Write the expression for gravitational potential
Here,
At infinite distance both kinetic and potential energies are considered zero.
Substitute
Rearrange for
Substitute
Thus, the escape velocity of an object is
(b)
The average speed of hydrogen atom at
(b)

Answer to Problem 112P
The average speed of hydrogen atom is
Explanation of Solution
Write the expression for average speed of an atom
Here,
Substitute
Thus, the average speed of hydrogen is
(c)
The average speed of oxygen molecule at
(c)

Answer to Problem 112P
The average speed of oxygen molecule is
Explanation of Solution
Substitute
Thus, the average speed of oxygen molecule is
(d)
The reason for more oxygen than hydrogen on the Earth’s atmosphere.
(d)

Answer to Problem 112P
The average speed of hydrogen is greater for hydrogen.
Explanation of Solution
Particles with velocity lesser than that of the escape velocity cannot escape Earth’s atmosphere.
From the above results, the escape velocity is about six times the average speed of the hydrogen atom. Thus, a small fraction of hydrogen atoms might possess velocity greater than the required escape velocity to cross the Earth’s atmosphere.
The average speed of oxygen molecules is lesser than that of hydrogen and hence only a smaller fraction will possess the required speed to escape Earth’s gravitational pull. Thus, oxygen is found more than hydrogen in the Earth’s atmosphere.
Want to see more full solutions like this?
Chapter 13 Solutions
Physics
- Consider a uniformly charged ring of radius R with total charge Q, centered at the origin inthe xy-plane. Find the electric field (as a vector) at a point on the z-axis at a distance z above thecenter of the ring. Assume the charge density is constant along the ring.arrow_forward3) If the slider block C is moving at 3m/s, determine the angular velocity of BC and the crank AB at the instant shown. (Use equation Vs Vc wx fuc, then use equation Vs VA + Ve/athen write it in terms of w and the appropriate r equate the two and solve) 0.5 m B 1 m 60° A 45° vc = 3 m/sarrow_forward3) If the slider block C is moving at 3m/s, determine the angular velocity of BC and the crank AB at the instant shown. (Use equation Vs Vc wxf, then use equation V, VA + Va/Athen write it in terms of w and the appropriate r equate the two and solve) f-3marrow_forward
- Pls help ASAParrow_forwardPls help ASAParrow_forward14. A boy is out walking his dog. From his house, he walks 30 m North, then 23 m East, then 120 cm South, then 95 m West, and finally 10 m East. Draw a diagram showing the path that the boy walked, his total displacement, and then determine the magnitude and direction of his total displacement.arrow_forward
- Pls help ASAParrow_forward12. A motorboat traveling 6 m/s, West encounters a water current travelling 3.5 m/s, South. a) Draw a vector diagram showing the resultant velocity, then determine the resultant velocity of the motorboat. b) If the width of the river is 112 m wide, then how much time does it take for the boat to travel shore to shore? c) What distance downstream does the boat reach the opposite shore?arrow_forwardLake Erie contains roughly 4.00⋅10114.00⋅1011 m3 of water. Assume the density of this water is 1000. kg/m3 and the specific heat of water is 4186 J/kg˚C. It takes 2.31x10^19 J of energy to raise the temperature of that volume of water from 12.0 °C to 25.8 ˚C. An electric power plant can produce about 1110 MW. How many years would it take to supply this amount of energy by using the 1110 MW from an electric power plant?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





