The notion of an asymptote can be extended to include curve as well as lines. Specifically, we say that curves y = f x and y = g x are asymptotic as x → + ∞ provided lim x → − ∞ f x − g x = 0 and are asymptotic as x → − ∞ provided lim x → − ∞ f x − g x = 0 In these exercises, determine a simpler function g x such that y = f x is asymptotic to y = g x as x → + ∞ or x → − ∞ . Use a graphing utility to generate the graphs of y = f x and y = g x and identify all vertical asymptotes. f x = − x 3 + 3 x 2 + x − 1 x − 3
The notion of an asymptote can be extended to include curve as well as lines. Specifically, we say that curves y = f x and y = g x are asymptotic as x → + ∞ provided lim x → − ∞ f x − g x = 0 and are asymptotic as x → − ∞ provided lim x → − ∞ f x − g x = 0 In these exercises, determine a simpler function g x such that y = f x is asymptotic to y = g x as x → + ∞ or x → − ∞ . Use a graphing utility to generate the graphs of y = f x and y = g x and identify all vertical asymptotes. f x = − x 3 + 3 x 2 + x − 1 x − 3
The notion of an asymptote can be extended to include curve as well as lines. Specifically, we say that curves
y
=
f
x
and
y
=
g
x
are asymptotic as
x
→
+
∞
provided
lim
x
→
−
∞
f
x
−
g
x
=
0
and are asymptotic as
x
→
−
∞
provided
lim
x
→
−
∞
f
x
−
g
x
=
0
In these exercises, determine a simpler function
g
x
such that
y
=
f
x
is asymptotic to
y
=
g
x
as
x
→
+
∞
or
x
→
−
∞
. Use a graphing utility to generate the graphs of
y
=
f
x
and
y
=
g
x
and identify all vertical asymptotes.
For each given function f(x) find f'(x) using the rules learned in section 9.5.
1. f(x)=x32
32x
2. f(x)=7x+13
3. f(x) =
x4
4. f(x) = √√x³
5. f(x) = 3x²+
3
x2
Find:
lim x →-6 f (x)
limx-4 f (x)
lim x-1 f (x)
lim x →4 f (x)
(-6,3) •
(-1,5)
-8
-7
(-6,-2)
4+
(4,5)
(4,2) •
(-1,1)
-6
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.