COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 49QAP
To determine
The ratio of the speeds of sounds in two liquids.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
COLLEGE PHYSICS
Ch. 13 - Prob. 1QAPCh. 13 - Prob. 2QAPCh. 13 - Prob. 3QAPCh. 13 - Prob. 4QAPCh. 13 - Prob. 5QAPCh. 13 - Prob. 6QAPCh. 13 - Prob. 7QAPCh. 13 - Prob. 8QAPCh. 13 - Prob. 9QAPCh. 13 - Prob. 10QAP
Ch. 13 - Prob. 11QAPCh. 13 - Prob. 12QAPCh. 13 - Prob. 13QAPCh. 13 - Prob. 14QAPCh. 13 - Prob. 15QAPCh. 13 - Prob. 16QAPCh. 13 - Prob. 17QAPCh. 13 - Prob. 18QAPCh. 13 - Prob. 19QAPCh. 13 - Prob. 20QAPCh. 13 - Prob. 21QAPCh. 13 - Prob. 22QAPCh. 13 - Prob. 23QAPCh. 13 - Prob. 24QAPCh. 13 - Prob. 25QAPCh. 13 - Prob. 26QAPCh. 13 - Prob. 27QAPCh. 13 - Prob. 28QAPCh. 13 - Prob. 29QAPCh. 13 - Prob. 30QAPCh. 13 - Prob. 31QAPCh. 13 - Prob. 32QAPCh. 13 - Prob. 33QAPCh. 13 - Prob. 34QAPCh. 13 - Prob. 35QAPCh. 13 - Prob. 36QAPCh. 13 - Prob. 37QAPCh. 13 - Prob. 38QAPCh. 13 - Prob. 39QAPCh. 13 - Prob. 40QAPCh. 13 - Prob. 41QAPCh. 13 - Prob. 42QAPCh. 13 - Prob. 43QAPCh. 13 - Prob. 44QAPCh. 13 - Prob. 45QAPCh. 13 - Prob. 46QAPCh. 13 - Prob. 47QAPCh. 13 - Prob. 48QAPCh. 13 - Prob. 49QAPCh. 13 - Prob. 50QAPCh. 13 - Prob. 51QAPCh. 13 - Prob. 52QAPCh. 13 - Prob. 53QAPCh. 13 - Prob. 54QAPCh. 13 - Prob. 55QAPCh. 13 - Prob. 56QAPCh. 13 - Prob. 57QAPCh. 13 - Prob. 58QAPCh. 13 - Prob. 59QAPCh. 13 - Prob. 60QAPCh. 13 - Prob. 61QAPCh. 13 - Prob. 62QAPCh. 13 - Prob. 63QAPCh. 13 - Prob. 64QAPCh. 13 - Prob. 65QAPCh. 13 - Prob. 66QAPCh. 13 - Prob. 67QAPCh. 13 - Prob. 68QAPCh. 13 - Prob. 69QAPCh. 13 - Prob. 70QAPCh. 13 - Prob. 71QAPCh. 13 - Prob. 72QAPCh. 13 - Prob. 73QAPCh. 13 - Prob. 74QAPCh. 13 - Prob. 75QAPCh. 13 - Prob. 76QAPCh. 13 - Prob. 77QAPCh. 13 - Prob. 78QAPCh. 13 - Prob. 79QAPCh. 13 - Prob. 80QAPCh. 13 - Prob. 81QAPCh. 13 - Prob. 82QAPCh. 13 - Prob. 83QAPCh. 13 - Prob. 84QAPCh. 13 - Prob. 85QAPCh. 13 - Prob. 86QAPCh. 13 - Prob. 87QAPCh. 13 - Prob. 88QAPCh. 13 - Prob. 89QAPCh. 13 - Prob. 90QAPCh. 13 - Prob. 91QAPCh. 13 - Prob. 92QAPCh. 13 - Prob. 93QAPCh. 13 - Prob. 94QAPCh. 13 - Prob. 95QAPCh. 13 - Prob. 96QAPCh. 13 - Prob. 97QAPCh. 13 - Prob. 98QAPCh. 13 - Prob. 99QAPCh. 13 - Prob. 100QAPCh. 13 - Prob. 101QAPCh. 13 - Prob. 102QAPCh. 13 - Prob. 103QAPCh. 13 - Prob. 104QAPCh. 13 - Prob. 105QAPCh. 13 - Prob. 106QAPCh. 13 - Prob. 107QAPCh. 13 - Prob. 108QAPCh. 13 - Prob. 109QAPCh. 13 - Prob. 110QAPCh. 13 - Prob. 111QAPCh. 13 - Prob. 112QAPCh. 13 - Prob. 113QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An interstate highway has been built through a neighborhood in a city. In the afternoon, the sound level in an apartment in the neighborhood is 80.0 dB as 100 cars pass outside the window every minute. Late at night, the traffic flow is only five cars per minute. What is the average late-night sound level?arrow_forward(a) Ear trumpets were never very common, but they did aid people with hearing losses by gathering sound over a large area and concentrating it on the smaller area of the eardrum. What decibel increase does an ear trumpet produce it its sound gathering area is 900 cm2 and the area of the eardrum is 0.500 cm2, but the trumpet only has an eficiency of 5.00% in transmitting the sound to the eardrum? (b) Comment on the usefulness of the decibel increase found in part (a).arrow_forwardA quartz watch contains a crystal oscillator in the form of a block of quartz that vibrates by contracting and expanding. An electric circuit feeds in energy to maintain the oscillation and also counts the voltage pulses to keep time. Two opposite faces of the block, 7.05 mm apart, are antinodes, moving alternately toward each other and away from each other. The plane halfway between these two faces is a node of the vibration. The speed of sound in quartz is equal to 3.70 103 m/s. Find the frequency of the vibration.arrow_forward
- The mating call of a male cicada is among the loudest noises in the insect world, reaching decibel levels of 105 dB at a distance of 1.00 m from the insect. (a) Calculate the corresponding sound intensity. (b) Calculate the sound intensity at a distance of 20.0 m from the insect, assuming the sound propagates as a spherical wave. (c) Calculate the decibel level at a distance of 20.0 m from 100 male cicadas each producing the same sound intensity.arrow_forwardWrite an expression that describes the pressure variation as a function of position and time for a sinusoidal sound wave in air. Assume the speed of sound is 343 m/s, = 0.100 m, and Pmax = 0.200 Pa.arrow_forwardAn aluminum rod is clamped one-fourth of the way along its length and set into longitudinal vibration by a variable-frequency driving source. The lowest frequency that produces resonance is 4 400 Hz. The speed of sound in an aluminum rod is 5 100 m/s. Determine the length of the rod.arrow_forward
- Review. A steel guitar string with a diameter of 1.00 mm is stretched between supports 80.0 cm apart. The temperature is 0.0C. (a) Find the mass per unit length of this siring. (Use the value 7.86 103 kg/m4 for the density.) (b) The fundamental frequency of transverse oscillations of the string is 200 Hz. What is the tension in the string? Next, the temperature is raised to 30.0C. Find the resulting values of (c) the tension and (d) the fundamental frequency. Assume both the Youngs modulus of 20.0 1010 N/m2 and the average coefficient of expansion = 11.0 10-6 (C)-1 have constant values between 0.0C and 30.0C.arrow_forwardHow do sound vibrations of atoms differ from thermal motion?arrow_forwardWhen all the strings on a guitar (Fig. OQ16.5) are stretched to the same tension, will the speed of a wave along the most massive bass string be (a) faster, (b) slower, or (c) the same as the speed of a wave on the lighter strings? Alternatively, (d) is the speed on the bass string not necessarily any of these answers?arrow_forward
- The amplitude of a sound wave is measured in terms of its maximum gauge pressure. By what factor does the amplitude of a sound wave increase if the sound intensity level goes up by 40.0 dB?arrow_forwardIn Section 16.7, we derived the speed of sound in a gas using the impulsemomentum theorem applied to the cylinder of gas in Figure 16.20. Let us find the speed of sound in a gas using a different approach based on the element of gas in Figure 16.18. Proceed as follows. (a) Draw a force diagram for this element showing the forces exerted on the left and right surfaces due to the pressure of the gas on either side of the element. (b) By applying Newtons second law to the element, show that (P)xAx=Ax2st2 (c) By substituting P = (B s/x) (Eq. 16.30), derive the following wave equation for sound: B2sx2=2st2 (d) To a mathematical physicist, this equation demonstrates the existence of sound waves and determines their speed. As a physics student, you must take another step or two. Substitute into the wave equation the trial solution s(x, t) = smax cos (kx t). Show that this function satisfies the wave equation, provided /k=v=B/.arrow_forwardA swimmer in the ocean observes one day that the ocean surface waves are periodic and resemble a sine wave. The swimmer estimates that the vertical distance between the crest and the trough of each wave is approximately 0.45 m, and the distance between each crest is approximately 1.8 m. The swimmer counts that 12 waves pass every two minutes. Determine the simple harmonic wave function that would describes these waves.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY