Concept explainers
(a)
The initial speed of the satellite.
(a)
Answer to Problem 40AP
The initial speed of the satellite is
Explanation of Solution
The mass of the satellite is
Formula to calculate the initial speed of the satellite is,
Here,
Substitute
Conclusion:
Therefore, the initial speed of the satellite is
(b)
The final speed of the satellite.
(b)
Answer to Problem 40AP
The final speed of the satellite is
Explanation of Solution
Formula to calculate the final speed of the satellite is,
Here,
Substitute
Conclusion:
Therefore, the final speed of the satellite is
(c)
The initial energy of the satellite-Earth system.
(c)
Answer to Problem 40AP
The initial energy of the satellite-Earth system is
Explanation of Solution
Formula to calculate the initial energy of the satellite-Earth system is,
Here,
Substitute
Conclusion:
Therefore, the initial energy of the satellite-Earth system is
(d)
The final energy of the satellite-Earth system.
(d)
Answer to Problem 40AP
The final energy of the satellite-Earth system is
Explanation of Solution
Formula to calculate the final energy of the satellite-Earth system is,
Substitute
Conclusion:
Therefore, the final energy of the satellite-Earth system is
(e)
The mechanical energy of the system has decreased and estimates the amount of decrease mechanical energy of the system.
(e)
Answer to Problem 40AP
The amount of decrease mechanical energy of the system is
Explanation of Solution
Formula to calculate the mechanical energy of the system is,
Substitute
Conclusion:
Therefore, the amount of decrease mechanical energy of the system is
(f)
What force makes the satellite’s speed increases.
(f)
Answer to Problem 40AP
The component of the gravitational force pulls forward on the satellite and increases the speed of satellite.
Explanation of Solution
The only forces act on the satellite is the backward force of air resistance comparatively very small in magnitude to the force of gravity. Because the spiral path of the satellite is not perpendicular to the gravitational force, one component of the gravitational force pulls forward on the satellite to do positive work and makes speed increases.
Conclusion:
Therefore, component of the gravitational force pulls forward on the satellite and increases the speed of satellite.
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers
- the cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvotearrow_forwardThe shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forward
- Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forward
- The members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forwardpls helparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning