![Basic Business Statistics, Student Value Edition](https://www.bartleby.com/isbn_cover_images/9780134685113/9780134685113_largeCoverImage.gif)
A freshly brewed shot of espresso has three distinct components: the hear, body, and crema. The separation of these three components typically lasts only 10 to 20 seconds. To use the espresso shot in making a latte, a cappuccino, or another drink, the shot must be poured into the beverage during the separation of the heart, body, and crema. If the shot is used after the separation occurs, the drink becomes excessively bitter and acidic, running the final drink. Thus, a longer separation time allows the drink-maker more time to pour the shot ensure that the beverage will meet expectations. An employee at a coffee shop hypothesized that the harder the espresso grounds were tamped down into the portafilter before brewing, the longer the separation time would be. An experiment using 24 observations was conducted to test this relationship. The independent variable Tamp measures the distance, in inches, between the espresso grounds and the top the portafilter (i.e., the harder the tamp, the greater the distance). The dependent variable Time is the number of seconds the hear, body and crema are separate (i.e., the amount of time after the shot is poured before it must be used for the customer’s beverage.) The data are stored in Espresso.
a. Use the latest-squares method to develop a simple regression equation with Time as the dependent variable.
b. Predict the separation time for a tamp distance of 0.50 inch.
c. Plot the residuals versus the time order of experimentation. Are there any noticeable patterns?
d. Compute the Durbin-Watson statistic. At the 0.05 level of significance, is there evidence of positive autocorrelation among the residuals?
e. Based on the results of (c) and (d), is there to question the validity of the model?
f. What conclusions can you reach concerning the effect of tamping on the time of separation?
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 13 Solutions
Basic Business Statistics, Student Value Edition
- Question 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Starting salary % Raise Raise Salary after raise 75000 10% 7500 82500 82500 4% 3300…arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- 310015 K Question 9, 5.2.28-T Part 1 of 4 HW Score: 85.96%, 49 of 57 points Points: 1 Save of 6 Based on a poll, among adults who regret getting tattoos, 28% say that they were too young when they got their tattoos. Assume that six adults who regret getting tattoos are randomly selected, and find the indicated probability. Complete parts (a) through (d) below. a. Find the probability that none of the selected adults say that they were too young to get tattoos. 0.0520 (Round to four decimal places as needed.) Clear all Final check Feb 7 12:47 US Oarrow_forwardhow could the bar graph have been organized differently to make it easier to compare opinion changes within political partiesarrow_forwardDraw a picture of a normal distribution with mean 70 and standard deviation 5.arrow_forward
- What do you guess are the standard deviations of the two distributions in the previous example problem?arrow_forwardPlease answer the questionsarrow_forward30. An individual who has automobile insurance from a certain company is randomly selected. Let Y be the num- ber of moving violations for which the individual was cited during the last 3 years. The pmf of Y isy | 1 2 4 8 16p(y) | .05 .10 .35 .40 .10 a.Compute E(Y).b. Suppose an individual with Y violations incurs a surcharge of $100Y^2. Calculate the expected amount of the surcharge.arrow_forward
- 24. An insurance company offers its policyholders a num- ber of different premium payment options. For a ran- domly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x)=0.00 : x < 10.30 : 1≤x<30.40 : 3≤ x < 40.45 : 4≤ x <60.60 : 6≤ x < 121.00 : 12≤ x a. What is the pmf of X?b. Using just the cdf, compute P(3≤ X ≤6) and P(4≤ X).arrow_forward59. At a certain gas station, 40% of the customers use regular gas (A1), 35% use plus gas (A2), and 25% use premium (A3). Of those customers using regular gas, only 30% fill their tanks (event B). Of those customers using plus, 60% fill their tanks, whereas of those using premium, 50% fill their tanks.a. What is the probability that the next customer will request plus gas and fill the tank (A2 B)?b. What is the probability that the next customer fills the tank?c. If the next customer fills the tank, what is the probability that regular gas is requested? Plus? Premium?arrow_forward38. Possible values of X, the number of components in a system submitted for repair that must be replaced, are 1, 2, 3, and 4 with corresponding probabilities .15, .35, .35, and .15, respectively. a. Calculate E(X) and then E(5 - X).b. Would the repair facility be better off charging a flat fee of $75 or else the amount $[150/(5 - X)]? [Note: It is not generally true that E(c/Y) = c/E(Y).]arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)