Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 34EAP
Pluto moves in a fairly elliptical orbit around the sun. Pluto’s speed at its closest approach of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Europa orbits Jupiter at a distance of 6.7 x 108 m from Jupiter's cloudtops
(the surface of the planet). If Jupiter's mass is 1.9 x 1027 kg and radius is
6.8 x 107 m, what is the speed of Europa as it orbits in m/s?
Round to the nearest hundredth. Don't worry about putting units, just put
the number.
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5.0 × 1010 m (inside the orbit of
Mercury), at which point its speed is 9.6 x 104 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed
when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.)
speed =
i
m/s
A satellite m = 500 kg orbits the earth at a distance d = 190 km, above the surface of the planet. The radius of the earth is re = 6.38 × 106 m and the gravitational constant G = 6.67 × 10-11 N m2/kg2 and the Earth's mass is me = 5.98 × 1024 kg. What is the speed of the satellite in m/s?
Chapter 13 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 13 - Prob. 1CQCh. 13 - The gravitational force of a star on orbiting...Ch. 13 - A 1000 kg satellite and a 2000 kg satellite follow...Ch. 13 - How far away from the earth must an orbiting...Ch. 13 - A space station astronaut is working outside the...Ch. 13 - The free-fall acceleration at the surface of...Ch. 13 - Why is the gravitational potential energy of two...Ch. 13 - The escape speed from Planet X is 10,000 m/s....Ch. 13 - The mass of Jupiter is 300 times the mass of the...Ch. 13 - Satellites in near-earth orbit experience a very...
Ch. 13 - What is the ratio of the surfs gravitational force...Ch. 13 - What is the ratio of the sun’s gravitational force...Ch. 13 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 13 - What is the force of attraction between a 50 kg...Ch. 13 - The International Space Station orbits 300 km...Ch. 13 - Two 65 kg astronauts leave earth in a spacecraft,...Ch. 13 - A 20 kg sphere is at the origin and a 10kg sphere...Ch. 13 - a. What is the free-fall acceleration at the...Ch. 13 - What is the free-fall acceleration at the surface...Ch. 13 - A sensitive gravimeter at a mountain observatory...Ch. 13 - Saturn’s moon Titan has a mass of 1.351023 kg and...Ch. 13 - A newly discovered planet has a radius twice as...Ch. 13 - Suppose we could shrink the earth without changing...Ch. 13 - Planet Z is 10.000 km in diameter. The free-fall...Ch. 13 - An astronaut on earth can throw a ball straight up...Ch. 13 - What is the escape speed from Jupiter?Ch. 13 - A rocket is launched straight up from the earth’s...Ch. 13 - A space station orbits the sun at the same...Ch. 13 - Prob. 19EAPCh. 13 - Nothing can escape the event horizon of a black...Ch. 13 - You have been visiting a distant planet. Your...Ch. 13 - Two meteoroids are heading for earth. Their speeds...Ch. 13 - A binary star system has to stars, each with the...Ch. 13 - The asteroid belt circles the sun between the...Ch. 13 - You are the science officer on a visit to a...Ch. 13 - Three satellites orbit a planet of radius R, as...Ch. 13 - A satellite orbits the sun with a period of 1.0...Ch. 13 - A new planet is discovered orbiting the star Vega...Ch. 13 - Prob. 29EAPCh. 13 - An earth satellite moves in a circular orbit at a...Ch. 13 - What are the speed and altitude of a...Ch. 13 - a. At what height above the earth is the free-fall...Ch. 13 - Prob. 33EAPCh. 13 - Pluto moves in a fairly elliptical orbit around...Ch. 13 - FIGURE P13.35 shows three masses. What are the...Ch. 13 - What are the magnitude and direction of the net...Ch. 13 - Prob. 37EAPCh. 13 - What is the total gravitational potential energy...Ch. 13 - Two spherical objects have a combined mass of 150...Ch. 13 - Two 100 kg lead spheres are suspended from...Ch. 13 - Prob. 41EAPCh. 13 - An object of mass m is dropped from height h above...Ch. 13 - A projectile is shot straight up from the earth’s...Ch. 13 - Prob. 44EAPCh. 13 - 45. An astronaut circling the earth at an altitude...Ch. 13 - Suppose that on earth you can jump straight up a...Ch. 13 - Prob. 47EAPCh. 13 - Two spherical asteroids have the same radius R....Ch. 13 - A starship is circling a distant planet of radius...Ch. 13 - The two stars in a binary star system have masses...Ch. 13 - A 4000 kg lunar lander is in orbit 50 km above the...Ch. 13 - The 75,000 kg space shuttle used to fly in a...Ch. 13 - How much energy would be required to move the...Ch. 13 - NASA would like to place a satellite in orbit...Ch. 13 - In 2014, the European Space Agency placed a...Ch. 13 - A satellite orbiting the earth is directly over a...Ch. 13 - FIGURE P13.57 shows two planets of mass m orbiting...Ch. 13 - Figure 13.17 showed a graph of log T versus log r...Ch. 13 - Large stars can explode as they finish burning...Ch. 13 - The solar system is 25,000 light years from the...Ch. 13 - Three stars, each with the mass of our sun, form...Ch. 13 - Comets move around the sun in very elliptical...Ch. 13 - A 55,000 kg space capsule is in a...Ch. 13 - Prob. 64EAPCh. 13 - Prob. 65EAPCh. 13 - Prob. 66EAPCh. 13 - Two Jupiter size planets are released from rest...Ch. 13 - A satellite in a circular orbit of radius r has...Ch. 13 - While visiting Planet Physics. you toss a rock...Ch. 13 - A moon lander is orbiting the moon at an altitude...Ch. 13 - Let’s look in more detail at how a satellite is...Ch. 13 - FIGURE CP13.72 shows a particle of mass m at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardA satellite m = 500 kg orbits the earth at a distance d = 213 km, above the surface of the planet. The radius of the earth is re = 6.38 × 106 m and the gravitational constant G = 6.67 × 10-11 N m2/kg2 and the Earth's mass is me = 5.98 × 1024 kg. What is the speed of the satellite in m/s? v =arrow_forward
- A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c)Calculate the value of the total energy E in joules.arrow_forwardA comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.5 x 1010 m (inside the orbit of Mercury), at which point its speed is 9.2 x 104 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = 690 X m/s Additional Materials eBookarrow_forwardA comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5 x 1010 m (inside the orbit of Mercury), at which point its speed is 9.6 x 10* m/s. Its farthest distance from the Sun is beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = m/s Additional Materials eBook O Show My Work (Optional)arrow_forward
- A planet has a radius of 4.00 x 10^6 m, and rotates so rapidly that an object on the equator feels only 10% of the weight that it feels at the poles. What is the speed of an object at the equator?arrow_forwardA comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.6 x 1010 m (inside the orbit of Mercury), at which point its speed is 9.1 x 104 m/s. Its farthest distance from the Sun is far. beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = m/s Enter a number. AdditionaI Matenais O eBookarrow_forwardA satellite m = 500 kg orbits the earth at a distance d = 199 km, above the surface of the planet. The radius of the earth is re=6.38×106 m and the gravitational constant G =6.67×10-11 N m2/kg2 and the Earth's mass is me=5.98×1024 kg. What is the speed of the satellite in m/s?arrow_forward
- A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.01 x 10* m/s. The mass of the planet is M = 6.02 x 1024 kg. The mass of the satellite is m= 3.2 × 103 kg. Enter an expression for the kinetic energy KE of the satellite in terms of m and v. Calculate the value of KE in joules. Enter an expression for the magnitude of the gravitational force F in terms of M, R, m and the gravitational constant G. Enter an expression for the centripetal acceleration of the satellite a, in terms of the speed of the satellite, v, and R. Enter an expression for the radius R in terms of G, M and v. Calculate the value of R in meters. Enter an expression for the gravitational potential energy PE in terms of G, M, m, and R. Calculate the value of PE in joules. Enter an expression for the total energy E of the satellite in terms of m and v. Calculate the value of the total energy E in joules.arrow_forwardA comet goes around the Sun in an elliptical orbit. At its farthest point, 600 million miles from the Sun, it is traveling with a speed of 15000 mi/h. How fast is it traveling at its closest approach to the Sun, at a distance of 100 million miles?arrow_forward14. The mass of a planet is 5.0×10²ª kg and its radius is 6.1×10° m. The energy required for a body of mass 2.0 kg to escape completely from the planet is: A. 1.8 x 105 J С. 1.1 х 108 J В. 5.5 х 107 J D. 2.2 x 10$ Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY