Finite Mathematics (11th Edition)
11th Edition
ISBN: 9780321979438
Author: Margaret L. Lial, Raymond N. Greenwell, Nathan P. Ritchey
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.3, Problem 2E
Given a set of points, the least squares line formed by letting x be the independent variable will not necessarily be the same as the least squares line formed by letting y be the independent variable. Give an example to show why this is true.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given a set of points, the least-squares line formed by letting xbe the independent variable will not necessarily be the sameas the least-squares line formed by letting y be the independentvariable. Give an example to show why this is true.
Each month for several months, the average temperature in °C (x) and the number of pounds of steam (y) consumed by a certain chemical plant were measured. The least-squares line computed from the resulting data is y = 245.82 + 1.13x. Predict the number of pounds of steam consumed in a month where the average temperature is 65°C. If two months differ in their average temperatures by 5°C, by how much do you predict the number of pounds of steam consumed to differ?
The least squares line ŷ =10 + 5x describes the following coordinates: (1, 15), (2, 20), (3, 25), and (4, 30). Using these data as a specific example, explain the meaning of "least squares."
The line ŷ = 10 + 5x minimizes the sum of the squared horizontal distances from the points to the line.
The line ŷ = 10 + 5x minimizes the sum of the squared difference between the x and y values.
The line ŷ = 10 + 5x minimizes the sum of the vertical distances from the points to the line.
The line ŷ = 10 + 5x minimizes the square of the standard deviation.
The line ŷ = 10 + 5x minimizes the sum of the squared vertical distances from the points to the line.
Chapter 1 Solutions
Finite Mathematics (11th Edition)
Ch. 1.1 - Find the slope of each line. Through (4,5) and...Ch. 1.1 - Find the slope of each line. Through (5,-4) and...Ch. 1.1 - Find the slope of each line. Through (8,4) and (8,...Ch. 1.1 - Find the slope of each line. Through (1,5) and...Ch. 1.1 - Find the slope of each line. y = xCh. 1.1 - Find the slope of each line. y = 3x - 2Ch. 1.1 - Find the slope of each line. 5x - 9y = 11Ch. 1.1 - Find the slope of each line. 4x + 7y = 1Ch. 1.1 - Find the slope of each line. 9. x = 5Ch. 1.1 - Find the slope of each line. The x-axis
Ch. 1.1 - Find the slope of each line. y = 8Ch. 1.1 - Find the slope of each line. y = -6Ch. 1.1 - Find the slope of each line. A line parallel to 6x...Ch. 1.1 - Find the slope of each line. A line perpendicular...Ch. 1.1 - In Exercises 24, find an equation in...Ch. 1.1 - In Exercises 15-24, find an equation in...Ch. 1.1 - Prob. 17ECh. 1.1 - In Exercises 15-24, find an equation in...Ch. 1.1 - Prob. 19ECh. 1.1 - In Exercises 15-24, find an equation in...Ch. 1.1 - In Exercises 15-24, find an equation in...Ch. 1.1 - Prob. 22ECh. 1.1 - Prob. 23ECh. 1.1 - In Exercises 15- find an equation in...Ch. 1.1 - In Exercises 34, find an equation for each line in...Ch. 1.1 - In Exercises 25-34, find an equation for each line...Ch. 1.1 - Prob. 27ECh. 1.1 - Prob. 28ECh. 1.1 - In Exercises 25-34, find an equation for each line...Ch. 1.1 - In Exercises 25-34, find an equation for each line...Ch. 1.1 - In Exercises 25-34, find an equation for each line...Ch. 1.1 - In Exercises 25-34, find an equation for each line...Ch. 1.1 - Prob. 33ECh. 1.1 - Prob. 34ECh. 1.1 - Do the points (4,3), (2,0), and (-18,-12) lie on...Ch. 1.1 - Find k so that the line through (4, -1) and (k, 2)...Ch. 1.1 - Prob. 37ECh. 1.1 - Use slopes to show that the square with vertices...Ch. 1.1 - For the lines in Exercises and 40, which of the...Ch. 1.1 - Prob. 40ECh. 1.1 - Prob. 41ECh. 1.1 - In Exercises 41 and estimate the slope of the...Ch. 1.1 - Prob. 43ECh. 1.1 - Prob. 44ECh. 1.1 - Prob. 45ECh. 1.1 - Prob. 46ECh. 1.1 - Prob. 47ECh. 1.1 - Prob. 48ECh. 1.1 - Graph each equation. 2x - 3y = 12Ch. 1.1 - Prob. 50ECh. 1.1 - Prob. 51ECh. 1.1 - Prob. 52ECh. 1.1 - Prob. 53ECh. 1.1 - Prob. 54ECh. 1.1 - Prob. 55ECh. 1.1 - Graph each equation. y +8 = 0Ch. 1.1 - Prob. 57ECh. 1.1 - Prob. 58ECh. 1.1 - Prob. 59ECh. 1.1 - Graph each equation. 3x - 5y = 0Ch. 1.1 - Business and Economics Sales The sales of a small...Ch. 1.1 - Cost The total cost for a bakery to produce 100...Ch. 1.1 - Tuition The table lists the annual cost (in...Ch. 1.1 - Use of Cellular Telephones The following table...Ch. 1.1 - Consumer Price Index The Consumer Price Index...Ch. 1.1 - Life Sciences HIV Infection The time interval...Ch. 1.1 - Exercise Heart Rate To achieve the maximum benefit...Ch. 1.1 - Prob. 68ECh. 1.1 - Prob. 69ECh. 1.1 - Social Sciences Child Mortality Rate The mortality...Ch. 1.1 - Immigration In 1950, there were 249.187 immigrants...Ch. 1.1 - Marriage The following Table lists the U.S. median...Ch. 1.1 - Prob. 73ECh. 1.1 - Prob. 74ECh. 1.1 - Prob. 75ECh. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - For Exercises 1-10, let f(x) = 7 - /em>x and g(x)...Ch. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - Prob. 8ECh. 1.2 - For Exercises 1-10, let f(x) = 7 - 5x and g(x) =...Ch. 1.2 - Prob. 10ECh. 1.2 - In Exercises 14, decide whether the statement is...Ch. 1.2 - Prob. 12ECh. 1.2 - Prob. 13ECh. 1.2 - Prob. 14ECh. 1.2 - Prob. 15ECh. 1.2 - Prob. 16ECh. 1.2 - Prob. 17ECh. 1.2 - Prob. 18ECh. 1.2 - Prob. 19ECh. 1.2 - Prob. 20ECh. 1.2 - Prob. 21ECh. 1.2 - Prob. 22ECh. 1.2 - Assume that each situation can be expressed as a...Ch. 1.2 - Assume that each situation can be expressed as a...Ch. 1.2 - Assume that each situation can be expressed as a...Ch. 1.2 - Assume that each situation can be expressed as a...Ch. 1.2 - Business and Economics Supply and Demand Suppose...Ch. 1.2 - Prob. 28ECh. 1.2 - Supply and Demand Let the supply and demand...Ch. 1.2 - Prob. 30ECh. 1.2 - Prob. 31ECh. 1.2 - Prob. 32ECh. 1.2 - Break-Even Analysis Producing x units of tacos...Ch. 1.2 - Break-Even Analysis To produce x units of a...Ch. 1.2 - T-Shirt Cost Joanne Wendelken sells silk-screened...Ch. 1.2 - Prob. 36ECh. 1.2 - Marginal Cost of Coffee The manager of a...Ch. 1.2 - Marginal Cost of a New Plant In deciding whether...Ch. 1.2 - Prob. 39ECh. 1.2 - Prob. 40ECh. 1.2 - Prob. 41ECh. 1.2 - Prob. 42ECh. 1.2 - Prob. 43ECh. 1.2 - Prob. 44ECh. 1.2 - Prob. 45ECh. 1.2 - Prob. 46ECh. 1.2 - Prob. 47ECh. 1.2 - Prob. 48ECh. 1.2 - Temperature Find the temperature at which the...Ch. 1.2 - General Interest Education Cost A recent budget...Ch. 1.3 - Suppose a positive linear correlation is found...Ch. 1.3 - Given a set of points, the least squares line...Ch. 1.3 - Prob. 3ECh. 1.3 - Prob. 4ECh. 1.3 - The following problem is reprinted from the...Ch. 1.3 - The following problem is reprinted from the...Ch. 1.3 - Prob. 7ECh. 1.3 - Prob. 8ECh. 1.3 - The following problem is reprinted from the...Ch. 1.3 - Business and Economics Consumer Durable Goods The...Ch. 1.3 - Prob. 11ECh. 1.3 - Internet The percent of households with Internet...Ch. 1.3 - Landlines The percent of U.S. households with...Ch. 1.3 - Consumer Credit The total amount of consumer...Ch. 1.3 - Prob. 15ECh. 1.3 - Air Fares Using Expedia, a discount travel...Ch. 1.3 - Prob. 17ECh. 1.3 - Prob. 18ECh. 1.3 - Prob. 19ECh. 1.3 - Social Sciences Pupil-Teacher Ratios The following...Ch. 1.3 - Prob. 21ECh. 1.3 - Ideal Partner Height In an introductory statistics...Ch. 1.3 - Prob. 23ECh. 1.3 - Physical Sciences Length of a Pendulum Grandfather...Ch. 1.3 - Prob. 25ECh. 1.3 - General Interest Football The following data give...Ch. 1.3 - Prob. 27ECh. 1.3 - Prob. 28ECh. 1.3 - Running If you think a marathon is a long race,...Ch. 1 - The following table gives the life expectancy at...Ch. 1 - The following table gives the life expectancy at...Ch. 1 - The following table gives the life expectancy at...Ch. 1 - The following table gives the life expectancy at...Ch. 1 - The following table gives the life expectancy at...Ch. 1 - Prob. 6EACh. 1 - Now look at the residuals as a fresh data set, and...Ch. 1 - Prob. 8EACh. 1 - Prob. 9EACh. 1 - Determine whether each statement is true or false,...Ch. 1 - Prob. 2RECh. 1 - Prob. 3RECh. 1 - Prob. 4RECh. 1 - Prob. 5RECh. 1 - Prob. 6RECh. 1 - Prob. 7RECh. 1 - Prob. 8RECh. 1 - Prob. 9RECh. 1 - Prob. 10RECh. 1 - Prob. 11RECh. 1 - Prob. 12RECh. 1 - PRACTICE AND EXPLORATIONS What is marginal cost?...Ch. 1 - Prob. 14RECh. 1 - Prob. 15RECh. 1 - Prob. 16RECh. 1 - Prob. 17RECh. 1 - Prob. 18RECh. 1 - Prob. 19RECh. 1 - Prob. 20RECh. 1 - Prob. 21RECh. 1 - Prob. 22RECh. 1 - Prob. 23RECh. 1 - Prob. 24RECh. 1 - Prob. 25RECh. 1 - Prob. 26RECh. 1 - Prob. 27RECh. 1 - Prob. 28RECh. 1 - Prob. 29RECh. 1 - Prob. 30RECh. 1 - Prob. 31RECh. 1 - Prob. 32RECh. 1 - Prob. 33RECh. 1 - Prob. 34RECh. 1 - Prob. 35RECh. 1 - Prob. 36RECh. 1 - Prob. 37RECh. 1 - Prob. 38RECh. 1 - Prob. 39RECh. 1 - Prob. 40RECh. 1 - Prob. 41RECh. 1 - Prob. 42RECh. 1 - Prob. 43RECh. 1 - Prob. 44RECh. 1 - Prob. 45RECh. 1 - Prob. 46RECh. 1 - Prob. 47RECh. 1 - Prob. 48RECh. 1 - Supply and Demand A company is manufacturing a new...Ch. 1 - Prob. 50RECh. 1 - Cost In Exercises 50-53, find a linear cost...Ch. 1 - Prob. 52RECh. 1 - Prob. 53RECh. 1 - Prob. 54RECh. 1 - Prob. 55RECh. 1 - Prob. 56RECh. 1 - Prob. 57RECh. 1 - Social Security The average monthly Social...Ch. 1 - Meat Consumption The U.S. per capita consumption...Ch. 1 - Prob. 60RECh. 1 - Blood Sugar and Cholesterol Levels The following...Ch. 1 - Prob. 62RECh. 1 - Poverty The following table gives the number (in...Ch. 1 - Prob. 64RECh. 1 - Prob. 65RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The accompanying data resulted from an experiment in which weld diameter x and shear strength y (in pounds) were determined for five different spot welds on steel. A scatterplot shows a pronounced linear pattern. The least-squares line is = -964.98 + 8.60x. Because 1 lb = 0.4536 kg, strength observations can be re-expressed in kilograms through multiplication by this conversion factor: new y = 0.4536(old y). What is the equation of the least-squares line when y is expressed in kilograms? (Give the answer to two decimal places.) = x 202.9 212.9 222.9 232.9 242.8 y 814.5 786.1 961.2 1118.8 1077.0arrow_forwardSuppose that you have the following points (1,10), (3,8) (5,7) ( 7,6) and ( 4.4). Write the equation of the least squares line that best fits the data. Find r and r2 for the data givenarrow_forwardSuppose the (X,Y) pairs are: (1,5), (2, 3), (3, 4), (4,2), (5,3), (6, 1). Would the least squares fit to these data be much different from the least squares fit to the same data with the first pair replaced by (1,15)? Briefly explain.arrow_forward
- If the annual number of retail drug prescriptions (in millions) can be approximated by the least squares line y = 82.51x + 2917.93 where x = 0 corresponds to the year 2018, find the approximate number of prescriptions in the year 2028. A. 8763.03 million B. 3000.44 million C. 3743.03 million D. 2917.93 millionarrow_forwardFind the equation of the least-squares line for the stride length and speed of camels given in the table below. Use the equation of the least-squares line from to predict the average speed (in meters per second) of a camel with a stride length of 3.7 meters. Round your results to the nearest tenth of a meter per second.arrow_forwardWe use the form = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from Climatology Report No. 77-3 of the Department of Atmospheric Science, Colorado State University, showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado locations. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 315.27 28.31 11.24 0.002 Elevation -32.190 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.8% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation = a + bx. (a) Use the printout to…arrow_forward
- We use the form = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from Climatology Report No. 77-3 of the Department of Atmospheric Science, Colorado State University, showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado locations. Minitab output is provided below. Predictor Coef SE Coef T P Constant 318.16 28.31 11.24 0.002 Elevation −30.878 3.511 −8.79 0.003 S = 11.8603 R-Sq = 96.3% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation = a…arrow_forwardDescribe in your own words what it means to perform a linear least squares analysis. Provide an example to substantiate your claimsarrow_forwardThe mean of the data set {9,5, y, 2, x} is twice the data set {8, x, 4,1,3}. What is (y- x)2?arrow_forward
- Each month for several months, the average temperature in °C (x) and the number of pounds of steam (y) consumed by a certain chemical plant were measured. The least-squares line computed from the resulting data is y = 245.82 + 1.11x. a) Predict the number of pounds of steam consumed in a month where the average temperature is 65°C. Round the answer to two decimal places. b) If two months differ in their average temperatures by 5°C, by how much do you predict the number of pounds of steam consumed to differ? Round the answer to two decimal places.arrow_forwardIn order to increase the production of gas wells, a procedure known as “hydraulic fracturing” is often used. Fracture fluid, which consists of fluid mixed with sand, is pumped into the well. The following figure presents a scatterplot of the monthly production versus the volume of fracture fluid pumped for 255 gas wells. Both production and fluid are expressed in units of volume per foot of depth of the well. The least-squares line is superimposed. The equation of the least-squares line is y = 106.11 + 0.1119x. From the least-squares line, estimate the production for a well into which 4000 gal/ft are pumped. Round the answer to three decimal places.arrow_forwardPlease help me better understand how to solve this word problem. In a study of 2000 model cars, a researcher computed the least-squares regression line of price (in collars) on horsepower. He obtained the following equation of: Price = -7000 + 170 X horsepower. Based on the least-squares regression line, what would we predict the cost of a 2000 model car with horsepower equal to 230 to be (assuming no extrapolation error)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY