
Introductory Circuit Analysis; Laboratory Manual For Introductory Circuit Analysis Format: Kit/package/shrinkwrap
13th Edition
ISBN: 9780134297446
Author: Boylestad, Robert L.
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 23P
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help with this problem and an step by step explanation of the solution from the image described below. (Introduction to Signals and Systems)
Imaginary number electrical engineering
3. Describe the function of PLL circuit.
4. Describe the function of bandpass filter.
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
0.1u
6 CIA
PC1OUT 2
PULSES
PHASE(2)
COMPARATOR OUT 13.
C10
HT
150p R16
ww
R12
VSO
C6
200p
VCO OUT 4
IK
in
R14
C9
18K
10 O
w
7 Cle
H
VLO out
6
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
VR5
Figure 18-10 KL-94005 module
R15
U6Σ
OP37
BPF
Chapter 13 Solutions
Introductory Circuit Analysis; Laboratory Manual For Introductory Circuit Analysis Format: Kit/package/shrinkwrap
Ch. 13 - For the sinusoidal waveform in Fig. 13.85: a. What...Ch. 13 - For the sinusoidal signal in Fig. 13.86: a. What...Ch. 13 - For the periodic square-wave waveform in Fig....Ch. 13 - For the waveform of Fig. 13.88: a. Does this...Ch. 13 - Find the period of a periodic waveform whose...Ch. 13 - Find the frequency of a repeating waveform whose...Ch. 13 - If a periodic waveform has a frequency of 1 kHz,...Ch. 13 - Find the period of a sinusoidal waveform that...Ch. 13 - What is the frequency of periodic waveform that...Ch. 13 - For the oscilloscope pattern of Fig. 13.89: a....
Ch. 13 - For the waveform of Fig. 13.90: a. What is the...Ch. 13 - Convert the following degrees to radians: a. 40 b....Ch. 13 - Convert the following radians to degrees: /3 1.2...Ch. 13 - Find the angular velocity of a waveform with a...Ch. 13 - Find the angular velocity of a waveform with a...Ch. 13 - Find the frequency and period of sine waves having...Ch. 13 - Given f=60Hz, determine how long it will take the...Ch. 13 - If a sinusoidal waveform passes through an angle...Ch. 13 - Find the amplitude and frequency of the following...Ch. 13 - Sketch 6 sin 754t with the abscissa angle in...Ch. 13 - Sketch 8sin280t with the abscissa angle in...Ch. 13 - If e=300sin157t, how long (in second) does it take...Ch. 13 - Giveni=0.5sindetermine=72.Ch. 13 - Givenv=20determine=1.2.Ch. 13 - Givenv=30103determinetheanglesatwhichuwillbe6mV.Ch. 13 - If v=40Vat=30andt=1ms, determine the mathematical...Ch. 13 - Sketch sin (377t+60) with the abscissa angle in...Ch. 13 - Sketch the following waveforms: 50sin(wt+0)...Ch. 13 - Write the analytical expression for the waveforms...Ch. 13 - Write the analytical expression for the waveform...Ch. 13 - Write the analytical expression for the waveform...Ch. 13 - Write the analytical expression for the waveform...Ch. 13 - Find the phase relationship between the following...Ch. 13 - Find the phase relationship between the following...Ch. 13 - Prob. 35PCh. 13 - Find the phase relationship between the following...Ch. 13 - The sinusoidal voltage v=160sin(21000t+60) is...Ch. 13 - Prob. 38PCh. 13 - For the waveform of Fig. 13.95, find the time when...Ch. 13 - For the oscilloscope display in Fig. 13.97:...Ch. 13 - Find the average value of the periodic waveform in...Ch. 13 - Find the average value of the periodic waveforms...Ch. 13 - Find the average value of the periodic waveform of...Ch. 13 - Find the average value of the periodic waveform of...Ch. 13 - Find the average value of the periodic function of...Ch. 13 - Find the average value of the periodic waveform in...Ch. 13 - For the waveform in Fig. 13.104: Determine the...Ch. 13 - For the waveform in Fig. 13.105: Determine the...Ch. 13 - Find the rms values of the following sinusoidal...Ch. 13 - Write the sinusoidal expressions for voltages and...Ch. 13 - Find the rms value of the periodic waveform in...Ch. 13 - Find the rms value of the periodic waveform in...Ch. 13 - What are the average and rms values of the square...Ch. 13 - For each waveform in Fig. 13.109, determine the...Ch. 13 - For the waveform of Fig. 13.110: Carefully sketch...Ch. 13 - Determine the reading of the meter for each...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- DUC 1. Is the waveform on VT out terminal an ASK modulated signal? TS PROD 2. Is the waveform on VT out terminal an OOK modulated signal? ASK Modulator/Demodulator U1 VD Signal in VT out X1 W R1 VC Carrier in w x2 100K 3 Y1 4 Y2 AD633 Z VR1 10K VR1 Multiplier(1) I U2 Vx out X1 W R3 2 w x2 In2 100K 3 ۲۱ I Y2 AD633 Z VR2 R2 10K C4 100K VR2 Multiplier(2) +5V 200p R5 R6 R101K ww w 2.7K 22K 1N4148 D1 559 VE out D+ In(ac) 6 0H 200p HH 6 VLP out Vo out U3 VR 0.01 0.1u R8 VR3 ww 50K Envelope Detector 10K U3 LF356 VR3 LPF U4Σ LM311 Comparator U5 PLL in CS HH 14 SIGN IN PC1OUT 2 0.1u 6 CIA PULSES PHASE(2) COMPARATOR OUT 13 C10 HT 150p R16 ww R12 VSO 18K C6 200p VCO OUT 4 IK in R14 C9 10 O w H VLO out 6 7 Cle 15K VCO 150p 06 11 R1 CD4046 VCO IN 9 VR5 1K 12 R2 0.0047u C7 I Demod C8 out 10 SOURCE FOLLOWER R11 100K INH COMP IN 5 3 VR4 +5V+12V GND-12V о HTO 0.1u R13 10K I PL Figure 18-10 KL-94005 module VR5 R15 U6Σ OP37 BPFarrow_forwardh e 6. Discuss the relationship between Vx out and VLP out signals. 7. Describe the function of comparator. ASK Modulator/Demodulator U1 VD Signal in VT out X1 W R1 VC Carrier in w x2 100K 3 Y1 4 Y2 AD633 Z VR1 10K VR1 Multiplier(1) I U2 Vx out X1 W R3 2 w x2 In2 100K 3 ۲۱ I Y2 AD633 Z VR2 R2 10K C4 100K VR2 Multiplier(2) +5V 200p R5 R6 R101K ww w 2.7K 22K 1N4148 D1 559 VE out D+ In(ac) 6 0H 200p HH 6 VLP out Vo out U3 VR 0.01 0.1u R8 VR3 ww 50K Envelope Detector 10K U3 LF356 VR3 LPF U4Σ LM311 Comparator U5 PLL in CS HH 14 SIGN IN 0.1u 6 CIA PC1OUT 2 PULSES PHASE(2) COMPARATOR OUT 13. C10 HT 150p R16 ww R12 VSO C6 200p VCO OUT 4 IK in R14 C9 18K 10 O w 7 Cle H VLO out 6 15K VCO 150p 06 11 R1 CD4046 VCO IN 9 VR5 1K 12 R2 0.0047u C7 I Demod C8 out 10 SOURCE FOLLOWER R11 100K INH COMP IN 5 3 VR4 +5V+12V GND-12V о HTO 0.1u R13 10K I PL VR5 Figure 18-10 KL-94005 module R15 U6Σ OP37 BPFarrow_forwardChoose one of the choices indicated in the parentheses such as the following sentences have correct messing What is the main purpose of a communication system? a) To transmit information from one point to another b) To amplify signals for better reception c) To filter out unwanted noise dy To generate carrier waves for modulation 2. What the purpose of the modulator in a communication system? a) To generate the cares wave for modulation b) To convert the information signal to a modulated signal c) To filter out unwanted noise d) To amplify the modulated signal for transmission Which component in an FM transmitter is responsible for generating the carrier signal? a) Mixer b) Modulator c) Demodulator d) Oscillator 4 For a FM signal v(t) 25 cos (15 deviation 10 (3456 4 24669, 7321 7.21284) 117 10 sm 15501). Maximum frequency 5. In an AM receiver, which component is responsible for separating the modulating signal from the received AM signal? a) Mixer b) Modulator c) Demodulator dy…arrow_forward
- Q1. Choose the correct answer: 1. Increasing the amplitude of a square pulse (increases, decreases, maintains not related) the spectrum range in the frequency domain. 2. A continuous FT indicates a signal. (continuous, discrete, periodic non-periodic). the pulse duration is proportional to the amplitude of the signal. (PAM, PWM, PPM, 3. In ASK). . In VSB transmission (both sidebands are used, single sideband is used, single sideband and part of the other sideband, only the vestige of the carrier signal is used). 5. An economic FDM receiver design should contain simultaneous reception, selective reception). 6. In AMI code, the shapes of "1" and "0" are dependent, not related to each other). 7. In FDM the guard band is used to (pilot carrier zero crossing detector, (the same) opposite to each other, next bit increase the overlap between FDM signals, decrease the overlap between FDM signals, increase the baseband bandwidth, decrease the baseband bandwidth). 20 3. Higher number of levels…arrow_forwardIn a railway system with a power source of 600 VDC, I need to achieve a load output of 120 VDC for railway lights. I found a DC-DC converter capable of stepping down 600 VDC to 125 VDC. To obtain 120 VDC from this converter, we can use a voltage divider with the following equation: [R2/(R2+R1)]=120/125=0.96=0.96However, using resistors to achieve the desired output voltage raises some concerns. Is it advisable to use railway-grade resistors for this application? I found some resistors in the range of 1-10k ohms, but I am unsure how they should be connected in the circuit with the lights (the load to be used). I would greatly appreciate any suggestions or schematic diagrams to clarify the best approach for connecting the resistors in this setup.arrow_forwardFind the valve of the voltage Vx using the THEVENIN equivalent circuit and redo the problem with the NORTON equivalent circuit. Show both the the vinen and Norton circuits. I 12V m 1 ww 3 23 + 43Vx 5 63 миarrow_forward
- Find the valve of V using the Thevenin Equivalent Circuit and then determine if the 8 ohm resistor allows maximum power transfer. If not, then what value should the 8 ohm resistor be changed to for maximum power transfer? ZA 6 6 + 22V 83 V 34 2 6 АААА ААААarrow_forwardFind the valve of voltage Vx using the THE VIN IN equivalent circuit ww 8 Show the Theven in Circuit. I 7V ZV m 6 5 M + 4 34 АА 3 1 АААА 9A ↑ 24arrow_forwardDon't use ai to answer I will report you answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
ENA 9.2(1)(En)(Alex) Sinusoids & Phasors - Explanation with Example 9.1 ,9.2 & PP 9.2; Author: Electrical Engineering Academy;https://www.youtube.com/watch?v=vX_LLNl-ZpU;License: Standard YouTube License, CC-BY
Electrical Engineering: Ch 10 Alternating Voltages & Phasors (8 of 82) What is a Phasor?; Author: Michel van Biezen;https://www.youtube.com/watch?v=2I1tF3ixNg0;License: Standard Youtube License