Differential Equations with Boundary-Value Problems (MindTap Course List)
Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 21RE
To determine

To show: The steady state temperature u(r,θ) in the plate is u(r,θ)=12134r2cos(2θ)817r2cos(2θ) such that u(1,θ)=sin2θ, ur|r=2=0 and 0<θ<2π, 1<r<2.

Blurred answer
Students have asked these similar questions
In Problems 1 and 2 find the eigenfunctions and the equation that defines the eigenvalues for the given boundary-value problem. Use a CAS to approximate the first four eigenvalues A1, A2, A3, and A4. Give the eigenfunctions corresponding to these approximations. 1. y" + Ay = 0, y'(0) = 0, y(1) + y'(1) = 0
A normal distribution has a mean of 50 and a standard deviation of 4. Solve the following three parts? 1. Compute the probability of a value between 44.0 and 55.0. (The question requires finding probability value between 44 and 55. Solve it in 3 steps. In the first step, use the above formula and x = 44, calculate probability value. In the second step repeat the first step with the only difference that x=55. In the third step, subtract the answer of the first part from the answer of the second part.) 2. Compute the probability of a value greater than 55.0. Use the same formula, x=55 and subtract the answer from 1. 3. Compute the probability of a value between 52.0 and 55.0. (The question requires finding probability value between 52 and 55. Solve it in 3 steps. In the first step, use the above formula and x = 52, calculate probability value. In the second step repeat the first step with the only difference that x=55. In the third step, subtract the answer of the first part from the…
Assume that you fancy polynomial splines, while you actually need ƒ(t) = e²/3 – 1 for t€ [−1, 1]. See the figure for a plot of f(t). Your goal is to approximate f(t) with an inter- polating polynomial spline of degree d that is given as sa(t) = • Σk=0 Pd,k bd,k(t) so that sd(tk) = = Pd,k for tk = −1 + 2 (given d > 0) with basis functions bd,k(t) = Σi±0 Cd,k,i = • The special case of d 0 is trivial: the only basis function b0,0 (t) is constant 1 and so(t) is thus constant po,0 for all t = [−1, 1]. ...9 The d+1 basis functions bd,k (t) form a ba- sis Bd {ba,o(t), ba,1(t), bd,d(t)} of the function space of all possible sα (t) functions. Clearly, you wish to find out, which of them given a particular maximal degree d is the best-possible approximation of f(t) in the least- squares sense. _ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 function f(t) = exp((2t)/3) - 1 to project -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5…

Chapter 13 Solutions

Differential Equations with Boundary-Value Problems (MindTap Course List)

Ch. 13.1 - Find the steady-state temperature u(r, ) in the...Ch. 13.1 - If the boundary conditions for the annular plate...Ch. 13.1 - Find the steady-state temperature u(r, θ) in the...Ch. 13.1 - Find the steady-state temperature u(r, θ) in the...Ch. 13.1 - Find the steady-state temperature u(r, ) in the...Ch. 13.1 - Prob. 16ECh. 13.1 - Find the steady-state temperature u(r, ) in the...Ch. 13.1 - The plate in the first quadrant shown in Figure...Ch. 13.1 - Consider the annular plate in Figure 13.1.7....Ch. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.2 - Find the displacement u(r, t) in Example 1 if f...Ch. 13.2 - A circular membrane of unit radius 1 is clamped...Ch. 13.2 - Find the steady-state temperature u(r, z) in the...Ch. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Find the steady-state temperature u(r, z) in the...Ch. 13.2 - Find the steady-state temperatures u(r, z) in the...Ch. 13.2 - Find the steady-state temperatures u(r, z) in the...Ch. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - When there is heat transfer from the lateral side...Ch. 13.2 - Find the steady-state temperature u(r, z) in a...Ch. 13.2 - A circular plate is a composite of two different...Ch. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - In this problem we consider the general casethat...Ch. 13.3 - Solve the BVP in Example 1 if f()={50,0/20,/2....Ch. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Find the steady-state temperature u(r, ) within a...Ch. 13.3 - The steady-state temperature in a hemisphere of...Ch. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13 - Find the steady-state temperature u(r, θ) in a...Ch. 13 - Find the steady-state temperature in the circular...Ch. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Find the steady-state temperature u(r, ) in the...Ch. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Find the steady-state temperature u(r, z) in the...Ch. 13 - Prob. 10RECh. 13 - Find the steady-state temperature u(r, θ) in a...Ch. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Find the steady-state temperature u(r, θ) in the...Ch. 13 - Find the steady-state temperature u(r, z) in a...Ch. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RE
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY