Concept explainers
Which compound forms an electroIyte solution When dissolved in water?
a.
b.
c.
d.
Interpretation: Compound which gives electrolytic solution when dissolved in water, is to be identified.
Concept Introduction: Compound which are dissociated into its constituent ions are called electrolytes.
Compound which dissociates completely into its constituent ions forms an electrolytic solution when dissolved in water.
Answer to Problem 1SAQ
Correct answer: The compound
Therefore, option a is the correct answer.
Explanation of Solution
Reason for correct option:
The electrolytes are known to dissociate into their constituent ions and form electrolytic solutions, which conducts electricity. The potassium bromide,
Hence, option (a) is correct.
Reasons for incorrect options: Option (b) is incorrect because the molecule
Option (c) is incorrect because
Option (d) is incorrect because glucose,
Hence, options (b), (c) and (d) are incorrect.
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry (6th Edition)
Additional Science Textbook Solutions
Chemistry & Chemical Reactivity
Organic Chemistry
Chemistry & Chemical Reactivity
Chemistry For Changing Times (14th Edition)
Chemistry
Chemistry: Structure and Properties (2nd Edition)
- When 10. L of water is added to 3.0 L of 6.0 M H2SO4, what is the molarity of the resulting solution? Assume the volumes are additive.arrow_forward94. Baking soda (sodium hydrogen carbonate. NaHCO3) is often used to neutralize spills of acids on the benchtop in the laboratory. What mass of NaHCO3 would be needed to neutralize a spill consisting of 25.2 mL of 6.01 M hydrochloric acid solution?arrow_forwardCitric acid, which can be obtained from lemon juice, has the molecular formula C6H8O7. A 0.250-g sample of citric acid dissolved in 25.0 mL of water requires 37.2 mL of 0.105 M NaOH for complete neutralization. What number of acidic hydrogens per molecule does citric acid have?arrow_forward
- What is meant by a strong base? Are the strong bases also strong electrolytes? Explain.arrow_forwardWhat is the difference between a solute and a solvent?arrow_forwardCalculate the molarity of each of the following solutions: (a) 293 g HCl in 666 mL of solution, a concentrated HCl solution (b) 2.026 g FeCl3 in 0.1250 L of a solution used as an unknown in general chemistry laboratories (c) 0.00 1 mg Cd2+ in 0.100 L, the maximum permissible concentration of cadmium in drinking water (d) 0.0079 g C7H5SNO3 in one ounce (29.6 mL), the concentration of saccharin in a diet soft drink.arrow_forward
- A noncarbonated soft drink contains an unknown amount of citric acid, H3C6H5O7. lf 100. mL of the soft drink requires 33.51 mL of 0.0102 M NaOH to neutralize the citric add completely, what mass of citric acid does the soft drink contain per 100. mL? The reaction of citric acid and NaOH is H3C6H5O7(aq) + 3 NaOH(aq) Na3C6H5O7(aq) + 3 H2O()arrow_forward3.106 Twenty-five mL of a 0.388 M solution of Na2SO4 is mixed with 35.3 mL of 0.229 M Na2SO4. What is the molarity of the resulting solution? Assume that the volumes are additive.arrow_forward39. Standard solutions of calcium ion used to test for water hardness are prepared by dissolving pure calcium carbonate. CaCO3, in dilute hydrochloric acid. A 1.745-g sample of CaCO3 is placed in a 250.O-mL volumetric flask and dissolved in HCI. Then the solution is diluted to the calibration mark of the volumetric flask. Calculate the resulting molarity of calcium ion.arrow_forward
- A certain grade of steel is made by dissolving 5.0 g of carbon and 1.5 g of nickel per 100. g of molten iron. What is the mass percent of each component in the finished steel?arrow_forwardYou wish to prepare 1 L of a 0.02-M potassium iodate solution. You require that the final concentration be within 1% of 0.02 M and that the concentration must be known accurately to the fourth decimal place. How would you prepare this solution? Specify the glassware you would use, the accuracy needed for the balance, and the ranges of acceptable masses of KIO3 that can be used.arrow_forwardWhat volume of 0.250 M HCI is required to neutralize each of the following solutions? a. 25.0 mL of 0.103 M sodium hydroxide, NaOH b. 50.0 mL of 0.00501 M calcium hydroxide, Ca(OH)2 c. 20.0 mL of 0.226 M ammonia, NH3 d. 15.0 mL of 0.0991 M potassium hydroxide, KOHarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning