Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 1P
To determine

Calculate the electric field intensity E(r,θ,ϕ,t) and the magnetic field intensity H(r,θ,ϕ,t) at the far field.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The electric field intensity E(r,θ,ϕ,t) and the magnetic field intensity H(r,θ,ϕ,t) at the far field are 50βημrsin(ωtβr)(sinϕaϕ+cosθcosϕaθ)V/m and 50μrβsin(ωtβr)(sinϕaθcosθcosϕaϕ)A/m respectively.

Explanation of Solution

Calculation:

Given that,

As=50ejβrrax where r2=x2+y2+z2.

Using vector transformation (in spherical coordinate system),

ax=sinθcosϕar+cosθcosϕaθsinϕaϕ

Therefore, the given vector function As is written as,

As=50ejβrr(sinθcosϕar+cosθcosϕaθsinϕaϕ)        (1)

Write the general expression for magnetic vector potential As.

×Asμ=Hs        (2)

Here,

μ is the permeability of the medium, and

Hs is the magnetic field intensity.

Substitute equation (1) in (2).

×(50ejβrr(sinθcosϕar+cosθcosϕaθsinϕaϕ)As)μ=Hs1r2sinθ|arraθrsinθaϕrθϕ50ejβrμrsinθcosϕr(50ejβrμrcosθcosϕ)rsinθ(50ejβrμrsinϕ)|=Hs1r2sinθ|arraθrsinθaϕrθϕ50ejβrμrsinθcosϕ50ejβrμcosθcosϕ50ejβrμsinθsinϕ|=Hs1r2sinθ[(50ejβrμcosθsinϕ50ejβrμcosθsinϕ)ar(j50βejβrμsinθsinϕ+50ejβrμrsinθsinϕ)raθ+(j50βejβrμcosθcosϕ50ejβrμrcosθcosϕ)rsinθaϕ]=Hs

Reduce the equation as follows,

100cosθsinϕμr2sinθejβrar50μr2(1jβr)sinϕejβraθ50μr2cosθcosϕ(1+jβr)ejβraϕ=Hs

At far field, 1r term only remains. Therefore,

Hs=j50μrβejβr(sinϕaθcosθcosϕaϕ)        (3)

Consider the general expression to calculate the electric fields intensity.

Es=ηar×Hs        (4)

Here,

η is the intrinsic impedance.

Substitute equation (3) in (4).

Es=ηar×[j50μrβejβr(sinϕaθcosθcosϕaϕ)]

Es=j50βηejβrμr(sinϕaϕ+cosθcosϕaθ)        (5)

The general expression to calculate the electric field intensity is,

E=Re[Esejωt]        (6)

Substitute equation (5) in (6).

E=Re[j50βηejβrμr(sinϕaϕ+cosθcosϕaθ)ejωt]=Re[j50βηej(ωtβr)μr(sinϕaϕ+cosθcosϕaθ)ejωt]=Re{j50βη[cos(ωtβr)+jsin(ωtβr)]μr(sinϕaϕ+cosθcosϕaθ)ejωt}=50βημrsin(ωtβr)(sinϕaϕ+cosθcosϕaθ)V/m

The general expression to calculate the magnetic field intensity is,

H=Re[Hsejωt]        (7)

Substitute equation (3) in (7).

H=Re[j50μrβejβr(sinϕaθcosθcosϕaϕ)ejωt]=Re[j50μrβej(ωtβr)(sinϕaθcosθcosϕaϕ)]=Re{j50μrβ[cos(ωtβr)+jsin(ωtβr)](sinϕaθcosθcosϕaϕ)}=50μrβsin(ωtβr)(sinϕaθcosθcosϕaϕ)A/m

Conclusion:

Thus, the electric field intensity E(r,θ,ϕ,t) and the magnetic field intensity H(r,θ,ϕ,t) at the far field are 50βημrsin(ωtβr)(sinϕaϕ+cosθcosϕaθ)V/m and 50μrβsin(ωtβr)(sinϕaθcosθcosϕaϕ)A/m respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Section View - practice Homework 0.5000 3.0000 2,0000 1.0000
Drawing the section view for the following multiview drawing AutoCAD  you see the section pratice I need to show how to  autocad
A boiler with 80% efficiency produces steam at 40bar and 500 C at a rate of 1.128kg/s. The temperature of the feed water is raised from 25 C to 125 C in the economizer and the ambient air is drawn to the boiler at a rate of 2.70 kg/s at 16 C. The flue gases leave the chimney at rate of 3 kg/s at 150 C with specific heat of 1.01 kJ/kg.K. The dryness fraction of steam collected in the steam drum is 0.95. 1- Determine the heat value of the fuel. 2- The equivalence evaporation. 3- Draw the heat balance sheet.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY