
Calculate the electric field intensity E(r, θ, ϕ, t) and the magnetic field intensity H(r, θ, ϕ, t) at the far field.

Answer to Problem 1P
The electric field intensity E(r, θ, ϕ, t) and the magnetic field intensity H(r, θ, ϕ, t) at the far field are 50βημrsin(ωt−βr)(sinϕaϕ+cosθcosϕaθ) V/m and −50μrβsin(ωt−βr)(sinϕaθ−cosθcosϕaϕ) A/m respectively.
Explanation of Solution
Calculation:
Given that,
As=50e−jβrrax where r2=x2+y2+z2.
Using
ax=sinθcosϕar+cosθcosϕaθ−sinϕaϕ
Therefore, the given vector function As is written as,
As=50e−jβrr(sinθcosϕar+cosθcosϕaθ−sinϕaϕ) (1)
Write the general expression for magnetic vector potential As.
∇×Asμ=Hs (2)
Here,
μ is the permeability of the medium, and
Hs is the magnetic field intensity.
Substitute equation (1) in (2).
∇×(50e−jβrr(sinθcosϕar+cosθcosϕaθ−sinϕaϕ)As)μ=Hs1r2sinθ|arraθrsinθaϕ∂∂r∂∂θ∂∂ϕ50e−jβrμrsinθcosϕr(50e−jβrμrcosθcosϕ)rsinθ(−50e−jβrμrsinϕ)|=Hs1r2sinθ|arraθrsinθaϕ∂∂r∂∂θ∂∂ϕ50e−jβrμrsinθcosϕ50e−jβrμcosθcosϕ−50e−jβrμsinθsinϕ|=Hs1r2sinθ[(−50e−jβrμcosθsinϕ−50e−jβrμcosθsinϕ)ar−(j50βe−jβrμsinθsinϕ+50e−jβrμrsinθsinϕ)raθ+(−j50βe−jβrμcosθcosϕ−50e−jβrμrcosθcosϕ)rsinθaϕ]=Hs
Reduce the equation as follows,
−100cosθsinϕμr2sinθe−jβrar−50μr2(1−jβr)sinϕe−jβraθ−50μr2cosθcosϕ(1+jβr)e−jβraϕ=Hs
At far field, 1r term only remains. Therefore,
Hs=j50μrβe−jβr(sinϕaθ−cosθcosϕaϕ) (3)
Consider the general expression to calculate the electric fields intensity.
Es=−ηar×Hs (4)
Here,
η is the intrinsic impedance.
Substitute equation (3) in (4).
Es=−ηar×[j50μrβe−jβr(sinϕaθ−cosθcosϕaϕ)]
Es=−j50βηe−jβrμr(sinϕaϕ+cosθcosϕaθ) (5)
The general expression to calculate the electric field intensity is,
E=Re[Esejωt] (6)
Substitute equation (5) in (6).
E=Re[−j50βηe−jβrμr(sinϕaϕ+cosθcosϕaθ)ejωt]=Re[−j50βηej(ωt−βr)μr(sinϕaϕ+cosθcosϕaθ)ejωt]=Re{−j50βη[cos(ωt−βr)+jsin(ωt−βr)]μr(sinϕaϕ+cosθcosϕaθ)ejωt}=50βημrsin(ωt−βr)(sinϕaϕ+cosθcosϕaθ) V/m
The general expression to calculate the magnetic field intensity is,
H=Re[Hsejωt] (7)
Substitute equation (3) in (7).
H=Re[j50μrβe−jβr(sinϕaθ−cosθcosϕaϕ)ejωt]=Re[j50μrβej(ωt−βr)(sinϕaθ−cosθcosϕaϕ)]=Re{j50μrβ[cos(ωt−βr)+jsin(ωt−βr)](sinϕaθ−cosθcosϕaϕ)}=−50μrβsin(ωt−βr)(sinϕaθ−cosθcosϕaϕ) A/m
Conclusion:
Thus, the electric field intensity E(r, θ, ϕ, t) and the magnetic field intensity H(r, θ, ϕ, t) at the far field are 50βημrsin(ωt−βr)(sinϕaϕ+cosθcosϕaθ) V/m and −50μrβsin(ωt−βr)(sinϕaθ−cosθcosϕaϕ) A/m respectively.
Want to see more full solutions like this?
Chapter 13 Solutions
Elements Of Electromagnetics
- A rotating shaft is made of 42 mm by 4 mm thick cold-drawn round steel tubing and has a 6 mm diameter hole drilled transversely through it. The shaft is subjected to a pulsating torque fluctuating from 20 to 160 Nm and a completely reversed bending moment of 200 Nm. The steel tubing has a minimum strength of Sut = 410 MPa (60 ksi). The static stress-concentration factor for the hole is 2.4 for bending and 1.9 for torsion. The maximum operating temperature is 400˚C and a reliability of 99.9% is to be assumed. Find the factor of safety for infinite life using the modified Goodman failure criterion.arrow_forwardI need help with a MATLAB code. This code just keeps running and does not give me any plots. I even reduced the tolerance from 1e-9 to 1e-6. Can you help me fix this? Please make sure your solution runs. % Initial Conditions rev = 0:0.001:2; g1 = deg2rad(1); g2 = deg2rad(3); g3 = deg2rad(6); g4 = deg2rad(30); g0 = deg2rad(0); Z0 = 0; w0 = [0; Z0*cos(g0); -Z0*sin(g0)]; Z1 = 5; w1 = [0; Z1*cos(g1); -Z1*sin(g1)]; Z2 = 11; w2 = [0; Z2*cos(g2); -Z2*sin(g2)]; [v3, psi3, eta3] = Nut_angle(Z2, g2, w2); plot(v3, psi3) function dwedt = K_DDE(~, w_en) % Extracting the initial condtions to a variable % Extracting the initial condtions to a variable w = w_en(1:3); e = w_en(4:7); Z = w_en(8); I = 0.060214; J = 0.015707; x = (J/I) - 1; y = Z - 1; s = Z; % Kinematic Differential Equations dedt = zeros(4,1); dedt(1) = pi*(e(3)*(s-w(2)-1) + e(2)*w(3) + e(4)*w(1)); dedt(2) = pi*(e(4)*(w(2)-1-s) + e(3)*w(1) - e(1)*w(3)); dedt(3) = pi*(-e(1)*(s-w(2)-1) - e(2)*w(1) + e(4)*w(3));…arrow_forwardalpha 1 is not zero alpha 1 can equal alpha 2 use velocity triangle to solve for alpha 1 USE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',...…arrow_forward
- 3. Find a basis of eigenvectors and diagonalize. 4 0 -19 7 a. b. 1-42 16 12-20 [21-61arrow_forward2. Find the eigenvalues. Find the corresponding eigenvectors. 6 2 -21 [0 -3 1 3 31 a. 2 5 0 b. 3 0 -6 C. 1 1 0 -2 0 7 L6 6 0 1 1 2. (Hint: λ = = 3)arrow_forwardUSE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),...…arrow_forward
- USE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ...…arrow_forwardThe answer should equal to 1157. Please sent me the solution. Thank you!arrow_forwardBONUS: If the volume of the 8cm x 6.5cm x 6cm Block of Aluminum was 312cm3 before machining, find how much material was removed when the fixture below was machined. +2 2.00 cm 6.00 cm 2.50 cm 6.50 cm 1.00 cm 2.50 cm 11.00 cm 8.00 cm 30 CP 9411 FL.4) (m² 1157 Area of triangle = 1/2*B*H Area of circle = лR² Circumference of a circle = 2πR 6.00 cm 6.50 cm 1.50 cm Radius 1.50 cm 1.00 cmarrow_forward
- Consider a 5m by 5m wet concret patio with an average water film thickness of .2mm. Now wind at 50 km/h is blowing over the surface. If the air is at 1 atm, 15oC and 35 percent relative humidity, determine how long it will take for the patio to completely dry.arrow_forward70. Compute the number of cubic centimeters of iron required for the cast-iron plate shown. The plate is 3.50 centimeters thick. Round the answer to the nearest cubic centimeter. 50.0 cm 40.0 cm Radius 150° 115.0 cm- 81.0 cmarrow_forwardLaw of Sines Solve the following problems using the Law of Sin 7. Find side x. All dimensions are in inches. -°-67°-37° 81° x Sin A 8.820 X 67°00' 32°00' a sin A b C sin B sin Carrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





